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Abstract

Support Vector Machine (SVM) employs Structural Risk Minimization (SRM)
principle to generalize better than conventional machine learning methods em-
ploying the traditional Empirical Risk Minimization (ERM) principle. However,
training SVM requires large memory and long cpu time when training set is
large. One way to circumvent this computational burden is to select some of
training patterns in advance which contain most information given to learning.
One of the merits of SVM theory distinguishable from other learning algorithms
is that it is clear that which patterns are of importance to training. Those are
called support vectors (SVs), distributed near the decision boundary, and fully
and succinctly define the classification task at hand. Furthermore, on the same
training set, the SVMs trained with different kernel functions, i.e., RBF, poly-
nomial, and sigmoid, have selected almost identical subset as support vectors.
Therefore, it is worth finding such would-be support vectors prior to SVM train-
ing. In the thesis, we propose meighborhood property based pattern selection
algorithm (NPPS) which selects the patterns near the decision boundary based
on the neighborhood properties. We utilizes k nearest neighbors to look around
the pattern’s periphery. The first neighborhood property is that “a pattern
located near the decision boundary tends to have more heterogeneous neigh-
bors in their class-membership.” The second neighborhood property dictates
that “an overlap or a noisy pattern tends to belong to a different class from its
neighbors.” The first one is used for identifying those patterns located near the
decision boundary. The second one is used for removing the patterns located
on the wrong side of the decision boundary. These properties are first imple-
mented as a naive form with time complexity O(M?) where M is the number of
given training patterns. Then, to accelerate the pattern selection procedure we
utilize another property. The third neighborhood property is that “the neigh-
bors of a pattern located near the decision boundary tend to be located near



the decision boundary as well.” The third one skips calculation of unnecessary
distances between patterns. This advanced form of algorithm, fast NPPS, has a
practical time complexity of O(vM) where v is the number of patterns located
in the overlap region. The number of patterns located in the overlap region v
is closely related to determine a parameter of NPPS, the number of neighbors
k, accordingly we provide a heuristic method to set the value of k. Then, we
prove invariance of the neighborhood relation under the input to feature space
mapping, which assures that the patterns selected by NPPS in input space are
likely to be located near decision boundary in feature space in where SVs are
defined. NPPS is demonstrated on synthetic as well as real-world problems. The
results show that NPPS reduces SVM training time up to almost two orders of
magnitude with virtually no loss of accuracy. In addition, to exemplify a prac-
tical usage of the algorithm, we applies NPPS to marketing domain problem
- response modeling. This experiment is rather a domain-oriented application
than a simple algorithm-oriented application. We diagnose the domain specific
difficulties which can arise in practice when applying SVM to response mod-
eling, then propose how to alleviate and solve those difficulties: informative
sampling, different costs for different classes, and use of distance to decision
boundary. Again, SVM with NPPS achieved the accuracies and uplifts compa-
rable to those of SVM with 80-100% random samples, while the computational
cost was comparable to those of SVM with 10-20% random samples.

Keywords: Data Mining, Machine Learning, Support Vector Machines (SVM),
Pattern Selection, Customer Relationship Management (CRM), Response Mod-
eling

Student Number: 2000-30378
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CHAPTER 1

Introduction

Support Vector Machine (SVM) has been spotlighted in the machine learning
community thanks to its theoretical soundness and practical performance. First,
it is quite satisfying from a theoretical point of view. SVM can be character-
ized by three statements (Vapnik, 1999). SVM attempts to position a decision
boundary so that the margin between the two classes is maximized. The major
parameters of SVM are taken from the training patterns. Non-linear SVM is
based on the use of kernels to deal with high dimensional feature space without
directly working in it. Conventional neural networks tend to overfit the training
dataset, resulting in poor generalization since parameter selection is based on
Empirical Risk Minimization (ERM) principle which minimizes the error on the
training set. On the contrary, the SVM formulation embodies the Structural
Risk Minimization (SRM) principle which minimizes the error on the training
set with the lowest capacity. The difference allows SVM to generalize better,
which is the goal in statistical learning. Theoretically, SVM includes a large
class of neural networks (including radial basis functions networks), yet it is
simple enough to be analyzed mathematically. Second, SVM achieved great
success in practical applications as diverse as face detection and recognition,
handwritten character and digit recognition, text detection and categorization,
etc. (Dumais, 1998; Heisele et al., 2000; Moghaddam and Yang, 2000; Osuna et
al., 1997). In particular, Dumais (1998) and Joachims (1998) applied a num-
ber of learning methods to text categorization, such as SVMs, nearest neighbor
classifiers, probabilistic Bayesian models, decision trees, and neural networks.



2 Introduction

Among them, SVMs achieved most substantial improvements over the currently
best performing methods and they behaved robustly over a variety of different
learning tasks. Aside from the aforementioned research efforts, Byun and Lee
(2002) gave a comprehensive up-to-date survey on SVM applications.

However, in SVM quadratic programming (QP) formulation, the dimension of
kernel matrix (M x M) is equal to the number of training patterns (M). A
standard QP solver has time complexity of order O(M?3): MINOS, CPLEX,
LOQO, and MATLAB QP routines. In order to attack the large scale SVM QP
problem, the decomposition methods or iterative methods have been suggested
which break down the large QP problem into a series of smaller QP problems:
Chunking, SMO, SVthht, and SOR (Hearst et al., 1997; Platt, 1999). The
general time complexity of those methods is approximately 7 O(Mq+q*) where
T is the number of iterations and ¢ is the size of the working set. Needless to
say, T increases as M increases.

One way to circumvent this computational burden is to select some of training
patterns in advance which contain most information given to learning. One
of the merits of SVM theory distinguishable from other learning algorithms is
that it is clear that which patterns are of importance to training. Those are
called support vectors (SVs), distributed near the decision boundary, and fully
and succinctly define the classification task at hand (Cauwenberghs and Poggio,
2001; Pontil and Verri, 1998; Vapnik, 1999). Furthermore, on the same training
set, the SVMs trained with different kernel functions, i.e., RBF, polynomial, and
sigmoid, have selected almost identical subset as support vectors (Scholkopf et
al., 1995). Therefore, it is worth finding such would-be support vectors prior to
SVM training (see Fig. 1.1). Related researches will be reviewed in the next
chapter.

In this thesis, we propose neighborhood property based pattern selection algo-
rithm (NPPS). The practical time complexity of NPPS is O(vM) where v is
the number of patterns in the overlap region around decision boundary. We
utilize k nearest neighbors to look around the pattern’s periphery. The first
neighborhood property is that “a pattern located near the decision boundary
tends to have more heterogeneous neighbors in their class-membership.” The
second neighborhood property dictates that “an overlap or a noisy pattern tends
to belong to a different class from its neighbors.” And the third neighborhood
property is that “the neighbors of a pattern located near the decision boundary
tend to be located near the decision boundary as well.” The first one is used
for identifying those patterns located near the decision boundary. The second



Class 1 o o Class 1

Decision Boundary Class 2 O Class 2

a. original training set b. selected training set

Figure 1.1: Pattern selection: a large training set shown in (a) is condensed to a small
training set (b) which is composed of only potential support vectors.

one is used for removing the patterns located on the wrong side of the decision
boundary. And the third one is used for skipping calculation of unnecessary
distances between patterns, thus accelerating the pattern selection procedure.
In short, NPPS uses only local neighbor information to identify those patterns
likely to be located near decision boundary.

The thesis is organized as follows. Chapter 2 presents the literature review on
pattern selection. Chapter 3 briefly explains the SVM theory, in particular, the
patterns critically affecting the training. In chapter 4, we introduce a naive
algorithm (naive NPPS). In chapter 5, fast NPPS is introduced which evaluates
the patterns near the decision boundary only. This chapter is divided into the
introduction of algorithm and the time complexity analysis. Chapter 6 provides
a procedure of determining the number of neighbors, k, which is a parameter
used in naive NPPS and fast NPPS as well. In chapter 7, we provide proofs
on the invariance of the neighborhood relation under the input to feature space
mapping. The proof assures that the patterns selected by NPPS in input space
are likely to be located near decision boundary in feature space in where SVs
are defined. In chapter 8, we show the experimental results involving synthetic
problems and also real world problems. Chapter 9 exemplifies a practical usage
of NPPS by applying to a real problem in marketing domain - response mod-
eling in direct marketing. This chapter is rather a domain-oriented application
than a simple algorithm-oriented application. The last chapter concludes the
thesis with the limitations of our approach and the related future work.



Introduction




CHAPTER 2

Literature Review

To date, there have been several approaches on pattern selection for SVM.
Lyhyaoui et al. (1999) implemented RBF classifiers which somewhat resemble
SVMs, to make clear the difference between both methods. RBF classifiers were
built based on the patterns near the decision boundary. To find them, they pro-
posed to search 1-nearest neighbor in opposite class after class-wise clustering.
But this method presumes that the training set should be clean. Almeida et al.
(2000) conducted k-means clustering first on the entire training set regardless
of patterns’ class-membership. Those clusters which contain patterns from one
class are called homogeneous, while those which don’t are called heterogeneous.
All the patterns from a homogeneous cluster are replaced by a single centroid
pattern, while the patterns from a heterogeneous cluster are all selected. The
drawback of this research is that it is not clear how to determine the number
of clusters. Koggalage and Halgamuge (2004) also employed clustering to select
the patterns from the training set. It is quite similar to Almeida et al. (2000)’s
approach in that they conducted clustering on the entire training set first and
chose the patterns which belong to the clusters having heterogeneous members.
For a homogeneous cluster, on the contrary, the patterns along the rim of cluster
were selected not the centroid. It is relatively a safer approach since even for
homogeneous clusters there can exist the patterns near the decision boundary if
the cluster’s boundary is almost in contact with the decision boundary. On the
other hand, it has a relative shortcoming as well in that the patterns far away
from the decision boundary are also picked as long as they lie along the rim.



6 Literature Review

And further, it is still vague how to set the radius and how to define the width
of the rim from it. Zheng et al. (2003) proposed to substitute clusters’ centroids
for random samples of Lee and Mangasarian (2001)’s reduced SVM (RSVM).
RSVM is to choose random samples from the training set and regard them as
support vectors. But all the training patterns are still used as constraints of
SVM QP. In RSVM, it is not clear that how many random samples are re-
quired not to degrade the original accuracy of SVM. Zheng et al. (2003)’s idea
on RSVM is based on that the centroids are more representative than random
samples. In summary, clustering-based algorithms have a common weakness:
the selected patterns are fully dependent on the clustering performance which
could be unstable. A related performance comparison was dealt with in the re-
search of Liu and Nakagawa (2001). A bit different approach was done by Sohn
and Dagli (2001). In order to reduce the SVM training set as well as to elim-
inate noisy patterns (outliers), they utilized fuzzy class membership through k
nearest neighbors. According to the value of fuzzy class membership, they could
check a possibility of the pattern belonging to the class and eliminate the ones
having a weak possibility. However, they seem to overlook the importance of
the patterns near the decision boundary by treating them equal to the noisy
patterns (outliers far from the decision boundary).

In some sense, pattern selection for SVM could be seen somewhat similar to
SVM active learning or query learning since the latter also attempts to iden-
tify those critical patterns out of training set. However, there are substantial
differences between pattern selection and active (or query) learning. Firstly,
the primary motivation for active learning comes from the time or expense of
obtaining labeled training patterns, not of training itself. These are likely to be
applications of active learning. In some domains, for instance, such as industrial
process modeling, a single training pattern may require several days and cost
highly to generate. Or in other domains, such as email-filtering (or classifying),
obtaining training patterns is not expensive, but may require the user to spend
tedious hours to label them. On the other hand, in pattern selection we assume
that training patterns, of course labeled, are given. Secondly, active learning is
an incremental learning, not a batch learning. Active learning takes turns in
training and making queries over the next training pattern. As it were, when-
ever a new pattern is added to the training set, it runs repeatedly the training
algorithm and improves the learner with a newly introduced pattern. On the
contrary, in pattern selection, identifying a subset occurs once prior to training,
and training is also conducted once over it. Despite the differences, it is still a
common concern of both of them to find the patterns near the decision bound-
ary that influence SVM training significantly. In active learning domain, Schohn
and Cohn (2000) attempted to select a training pattern which maximally nar-
rows the existing margin by evaluating the proximity to the decision hyperplane.
Campbell et al (2000)’s selecting strategy is to start by requesting the labels of a



random subset of training patterns and subsequently iteratively requesting the
label of that patterns which is closest the current decision hyperplane. Brinker
(2003) issued multiple runs of active learning. To reduce the training runs, he
proposed to select batches of new training patterns instead of single one. A
batch set of new patterns is selected to satisfy both “minimal distance” from
the existing hyperplane and “maximal diversity” among them. Compared with
a SVM trained on randomly selected patterns, those active learning heuristics
provided significantly better generalization performance for a given number of
training patterns.

Approaches to select the patterns near the decision boundary can be found in
other learning algorithm. Shin and Cho (2002) selected the clean patterns near
the decision boundary based on the bias and variance of outputs of a network
ensemble. This approach is successful in selecting the intended and relevant
patterns, though it consumes too much time in training a network ensemble.
Foody (1999) showed the significance of decision boundary patterns in train-
ing neural networks. He used Mahalanobis distance from class core pattern to
find the boundary patterns. A neural network trained with a set of decision
boundary patterns may have a lower accuracy of learning but a significantly
higher accuracy of generalization than the one trained with a set of class core
patterns. To lessen the burden of the MLP training, Choi and Rockett (2002)
used kNN classifier to estimate the posterior probabilities for pattern selection.
But one major drawback is that it takes approximately O(M?) to estimate
the posterior probabilities. The authors argued that the time spent for this
prior procedure would not be problematic since conventionally the MLP train-
ing needs multiple trials to find hyper-parameters but the pattern selection runs
only once. Another drawback is that it is not clear how to determine the value
of k. Hara and Nakayama (2000) attempted to add extra correct patterns to
the selected boundary pattern set in order to enhance the overlap region near
the decision boundary, which is common in (Choi and Rockett, 2002). The ra-
tionale is that “overlap patterns” located on the “wrong” side of the decision
boundary cause the MLP training to take a longer time. Since the derivatives
of the back-propagated errors are evaluated at those patterns, the derivatives
are very small if they are grouped in a narrow region on either side of the deci-
sion boundary. By means of adding extra correct patterns, the network training
converged faster. Empirically, we also found a similar performance decline in
terms of the SVM accuracy for non-separable classification cases. Our approach
to enhancing the decision boundary pattern set is, however, to eliminate the
overlap patterns and to retain the correct ones in the overlap region near the
decision boundary. More researches related to training with the patterns near
the decision boundary can be found in (Hara and Nakayama, 1998; Lee and
Landgrebe, 1997; Leisch et al., 1998).
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CHAPTER 3

Support Vector Machines and
Critical Training Patterns

Support Vector Machines (SVMs) are a general class of statistical learning ar-
chitecture that performs structural risk minimization on a nested set structure
of separating hyperplanes (Cristianini and Shawe-Taylor, 2000; Scholkopf and
Smola, 2002; Vapnik, 1999). Consider a binary classification problem with M
patterns (Z;,y;),4 = 1,--- , M where #; € R and y; € {—1, 1}. Let us assume
that patterns with y; = 1 belong to class 1 while those with y; = —1 belong
to class 2. SVM training involves solving the following quadratic programming

problem which yields the largest margin (%) between classes,

[

M
: . 1
min @(w,§):§||w|\2+CZ§i,

sty (W-@(F)+b) >1-§, (3.1)
57,207 Z':17"'7]\47

where @ € R¢, b € R (see Fig. 3.1). Eq.(3.1) is the most general SVM formula-
tion allowing both non-separable and nonlinear cases. The £’s are nonnegative
slack variables for a non-separable case, which play a role of allowing a certain
level of misclassification. The ®(-) is a mapping function for a nonlinear case
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. = Class 1
& B(F) +b=0 wo oo
o o
o
o
.2
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Space & Class 2 f - B(F) +b=—1

Figure 3.1: SVM classification problem: Through a mapping function ®(-), the
class patterns are linearly separated in a feature space. The patterns deter-
mining both margin hyperplanes are outlined. The decision boundary is the
half-way hyperplane between margins.

that projects patterns from the input space into a feature space. This nonlin-
ear mapping is performed implicitly by employing a kernel function, K (&, "),
to avoid the costly calculation of inner products, ®(Z) - ®(Z). There are three
typical kernel functions, RBF, polynomial, and tansig in due order,

K (%,1) = exp(—||Z—21*/207), (3.2)
K@Z#) = @ -2 +1)°,
K(Z,#) = tanh(p(Z-&')+9).

The optimal solution of Eq.(3.1) yields a decision function of the following form,

M
f(&) = sign (0 - ®(F) +b) = sign <Z yio; D(Z;) - D(T) + b)

M
= sign (Z yic; K(%;, ) + b) , (3.3)
i=1

where ;s are nonnegative Lagrange multipliers associated with training pat-
terns, respectively. The solutions, «a;s, are obtained from the dual problem
of Eq.(3.1), which minimizes a convex quadratic objective function under con-
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straints

O<I£cl,i20 041; Z azajyzyj Z o + bz Yia;.

1,j=1

The first-order conditions on W (w;,b) are reduced to the Karush-Kuhn-Tucker
(KKT) conditions,

OW (ai,b - £
8(;1 ) Zyzyj (Ti, Tj)oy +yib— 1=y f(@) —1=g;,  (34)

OW (oui,b
W(a ) Z yi; =

where f(-) is the function inside the parentheses of sign in Eq.(3.3). The KKT
complementarity condition, Eq. (3.4), partitions the training pattern set into
three categories according to the corresponding «;s.

(a) ¢:>0 — a; =0 :irrelevant patterns
(b) =0 — 0<a;<C : margin support vectors
(¢) <0 — a; =C : error support vectors

Fig. 3.2 illustrates those categories (Cauwenberghs and Poggio, 2001; Pontil
and Verri, 1998). The patterns belonging to (a) are out of the margins, thus
irrelevant to training, while the patterns belonging to (b) and (c) are critical
ones directly affecting training. They are called support vectors (SVs). The
patterns of (b) are strictly on the margin, hence called margin SVs. On the
other hand, the patterns of (c) lie between two margins, hence called error
SVs but are not necessarily misclassified. (Note that there is another type of
SVs belonging to the category of error SVs. They are such patterns incorrectly
labelled, and very far from the decision boundary. Since they hardly seem to be
originated from natural class overlap, we regard them as outliers or noises which
do not contribute the margin construction. For that reason, we will focus on the
SVs residing around decision boundary not deep in the realm of the opposite
class.)

Going back to Eq.(3.3), we can now see that the decision function is a linear
combination of kernels on only those critical training patterns (denoted as SVs)
because the patterns corresponding to a; = 0 have no influence on the decision
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W (ai,b)
W (e, b)

;=0 C'
Class 1(0) -

/" Class 20 /" Class 2@ /" Class 2(0)

a. Non SVs b. Margin SVs c. Error SVs

Figure 3.2: Three categories of training patterns

result.

= sign (Z yiou K (%5, % ) = szgn( Z yio K (25, & —i—b) (3.5)

1€ESVs

To sum up, it is clear in SVM theory which patterns are of importance to train-
ing. Those are distributed near the decision boundary, and fully and succinctly
define the classification task at hand. And the SVMs trained with different
kernel functions (RBF, polynomial, tansig) on the same training set have been
founded to select almost identical subset as support vectors (Scholkopf et al.,
1995). Therefore, it is worth finding such would-be support vectors in advance.



CHAPTER 4

Naive Pattern Selection
Algorithm

In this chapter, we introduce naive NPPS and indicate its limitation.

4.1 Naive NPPS

The proposed idea is to select only those patterns located around decision
boundary since they are the ones that contain most information. Obviously,
the decision boundary is not known until a classifier is built. Thus, the algo-
rithm utilizes neighborhood properties to infer the proximity of a pattern to
the decision boundary. The first neighborhood property is that “a pattern lo-
cated near the decision boundary tends to have more heterogeneous neighbors
in their class-membership.” Thus, the proximity of pattern #’s to the deci-
sion boundary is estimated by “Neighbors_Entropy (Z,k)”, which is defined as
the entropy of the pattern #’s knearest neighbors’ class labels (see Fig. 4.1). In
most cases, a pattern with a positive value of “Neighbors_Entropy (%, k)" is close
to the decision boundary, thus selected. Those patterns are likely to be SVs,
which correspond to the margin SVs in Fig. 3.2.b or the error SVs in Fig. 3.2.c.
Among the patterns selected, however, overlap patterns or noisy patterns are
also present. Here, let us first define overlap patterns as the patterns that are
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LabelProbability (Z, k) {

/* For Z, calculate the label probabilities of kNN (Z) over J classes,
{C4, Cs, ..., Oy}, where kNN(Z) is defined

as the set of k nearest neighbors of Z. */

k; = {& € Cj|¥ € KNN(@D)}|, j=1,...,J.

return <Pj = %, Vj).

}

Neighbors_Entropy (Z, k) {

/* Calculate the neighbors-entropy of & with its nearest neighbors’ labels.
In all calculations, 0log; ¢ is defined to be 0. */

Do LabelProbability (Z, k).
return <Zj:1 Pj -logs P%)

}

Neighbors_Match (&, k) {

/* Calculate the neighbors-match of Z.
j* is defined as the label of & itself.*/
Jr=arg{C; |¥€Cjj=1,...,J}.
Do LabelProbability (Z, k).

return ( P+ ).

Figure 4.1: Neighbors_Entropy and Neighbors_Match procedures

located in the other side of the decision boundary since the class distributions’
overlap. Overlap region is a region in feature space occupied by the overlap
patterns from either side of the decision boundary. Note that the overlap region
contains not only the overlap patterns, but also the close non-overlap patterns
which are located close to the decision boundary, yet in the right side of the
decision boundary. On the contrary, genuine noisy patterns are also defined as
the patterns that are located in the other side of the decision boundary, but far
away from the decision boundary. Those are not adjacent to overlap patterns
since they occur due to reasons other than class distribution overlap. Either
overlap patterns or noisy patterns have to be identified and removed as much
as possible since they are more likely to be the error SVs misclassified (between
the margins or far from the margins, see Fig. 3.2.c).

With this end, we take the second neighborhood property- “an overlap or a noisy
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pattern tends to belong to a different class from its meighbors.” If a pattern’s
own label is different from the majority label of its neighbors, it is likely to
be incorrectly labeled. The measure “Neighbors_Match (%, k)" is defined as the
ratio of @’s neighbors whose label matches that of & (see Fig. 4.1). The patterns
with a small Neighbors_Match(Z, k) value is likely to be the ones incorrectly
labeled. Only the patterns satisfying [Selecting Condition],

Neighbors_Entropy(Z, k) > 0 and Neighbors_ Match(Z, k) > (3 -

<=

are selected where 0 < § < 1. The larger value of 3 leads to the smaller
number of selected patterns. Setting § with a value of 1 means that we select
the patterns correctly classified by kNN, preliminary to the original classifier,
SVM. Thus, some of the critical patterns near the decision boundary might be
discarded. To conserve the original SVM accuracy, we lessen the prior influence
of kNN by weighing down S = 0.5. By doing so, the overlap (genuine noise)
patterns far away from the decision boundary can still be eliminated while the
patterns near the decision boundary can be more preserved.

One simple example of the patterns selected according to Selecting Condition
is depicted in Fig. 4.2 when J = 3 and k = 6. The numbers, 1, 2, and 3 in the
figure, stand for the patterns('s)’ class labels. We show the function values of
LabelProbability, Neighbrs_Entropy, Neighbors_Match in table 4.1 only for six
patterns marked by dotted circles among them. Let us consider #! in class 1
region first. It is remote from the decision boundary, thus, is surrounded by the
neighbors which all belong to class 1 like #! itself. Actually, #! does not satisfy
the Selecting Criteria since its Neighbors_Entropy value is zero. Meanwhile,
#2 is a noise pattern which resides in the other class region. It is surrounded
by the neighbors which all belong to the same class. Thus, it has zero Neigh-
bors_Entropy value. However, it is different from the pattern Z' in that its
neighbors are all belonging to class 2 while 2?2 itself belongs to class 1, which
results in zero Neighbors_Match value. In any case, the remote patterns from
the decision boundary like #! and &2 are excluded from selection. On the other
hand, % which is close to the decision boundary has various neighbors in their
class membership. Two of its neighbors belong to class 1, another two belong
to class 2, and the rest belong to class 3. Thus, its Neighbors_Entropy is 1, and
the Neighbors_Match is 1/3. Therefore, the pattern #° is selected because it
satisfies the Selecting Criteria (8 = 1.0). Similarly, among the six patterns in
the table 4.1, #* and 2°, are chosen. If we reduce the value of 5=1.0 to 0.5, % is
also added to the selected pattern set. See table 4.1 and note that the patterns
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Class 1 Class 2
1 1 2

Class 3 3

Figure 4.2: An example of selected patterns from three class (J = 3) classifi-
cation problem by setting £k = 6 and S = 0.5: the numbers, 1, 2 and 3 stand
for the patterns (#'s)’ class labels. Six patterns out of 29 are marked by dot-
ted circles to show their function values of LabelProbability, Neighbrs_Entropy,
Neighbors_Match in table 4.1.

selected are near the decision boundary in Fig. 4.2.

The parameter § controls the selectivity. The larger value of 3 leads to the
smaller number of selected patterns. We have empirically set § with a value of
0.5. Setting 0 with a value of 1 means that we select the patterns correctly clas-
sified by ANN, preliminary to the original classifier, SVM. In general, however,
KNN classifier is not as good as a sophisticated classifier such as SVM. Thus,
some of the critical patterns near the decision boundary might be discarded.
To conserve the original SVM accuracy, we lessen the prior influence of ANN by
weighing down 8 = 0.5. By doing so, the overlap (genuine noise) patterns far
away from the decision boundary can still be eliminated while the patterns near
the decision boundary can be more preserved. More discussion of the parameter
(8 will be given in the last chapter.

Fig. 4.3 shows the algorithm, naive NPPS. For each of M patterns, we find
the k nearest neighbors from the rest M — 1 patterns. If a pattern satisfies the
Selecting Criteria, it is added to the selected pattern set S. This procedure is
iterated over all patterns in D, then we get the final pattern set S in the end.
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Table 4.1: A Toy Example of Selected Patterns by Selecting Condition
j* is the class label of *’s own, and j* is that of its k*" nearest neighbor.
Neighbors Class Label LabelProbability Neighbors Selected Patterns
j* jl j2 j3 j4 j5 j6 P P, Ps Entropy Match|3=1.0 B8=0.5
L1111 1 1 1 6/6 0/6 0/6 0 6/6 X X
T 112 2 2 2 2 2 0/6 6/6 0/6 0 0/6 X X
2121 1 2 2 3 3 2/6 2/6 2/6 1 2/6 O @)
2|33 3 2 2 3 1 1/6 2/6 3/6 0.9227 3/6 O )
3|3 3 3 3 3 2 0/6 1/6 5/6 0.4100 5/6 @) ®)
1203 3 3 3 3 2 0/6 1/6 5/6 0.4100 1/6 X @)

NaiveNPPS(D, k) {

/* Constitute the select patterns set S from the original training set D
where ' € D, i =1,..., M. The number of classes J is given.*/

Initialize the selected pattern set S.
S « 0.
For (i—1:i<M :i++)
Add & satisfying the [Selecting Condition] to the selected pattern set S.
S «— SU{# | Neighbors_Entropy (Z',k) > 0 and
Neighbors_Match (f’”,k) >0 %, # € D).
end

return S

Figure 4.3: Naive NPPS
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Table 4.2: Total Time Complexity of Naive NPPS: “DT” and “ST” stand for
distance computation time and search(query) time, respectively.

DT O(d-(M—1))
ST min{O( (M —1)-log(M -1)),0(k-(M—-1))}
Total Time Complexity O(M - (DT + ST) ) =~ O(M?)

4.2 Limitation of Naive NPPS

In naive NPPS (Fig. 4.3), the kNNs of all patterns are evaluated. This al-
gorithm is easy to implement and also runs in a reasonable amount of time
as long as the size of training set, M, is relatively small. However, when the
size of the training set is large, the computational cost increases in propor-
tion to the size. Let us assume that the distance between any two points in
d-dimensional space can be computed in O(d). Then, finding the nearest neigh-
bors for each pattern takes sum of distance computation time “DT” and search
time “ST” (see table 4.2). The total time complexity of naive NPPS, there-
fore, is O ( M - (DT + ST) ). Roughly speaking, it is O(M?) since in general,
d< M, k< M and k <log(M — 1) hold.

There is a considerable amount of literature on efficient nearest neighbor search-
ing algorithms for large data sets of a high dimension. Most approaches focus
on reducing DT or ST. To mitigate the complexity of the distance computation
time DT, Grother et al. (1997) employed L, in place of Lo distance metric. But
disadvantage of this metric is an increase in error although this may be traded
off for speed by using a larger training set. See also (Short and Fukunaga,
1981) for various distance measures for the nearest neighbor methods. Another
technique in (Grother et al., 1997) to lessen DT is early rejection of the pat-
terns during distance computation. If the distance till the d’ (d' < d) features
of the d-dimensional pattern already exceeds the distance to the current k'’
closest neighbor, the rest d — d’ features are ignored from the calculation. So
the distance between any two patterns can be computed within O(d’) not O(d).
Feature ordering methods can afford better improvement for this partial dis-
tance calculation. Reducing the search time ST is quite closely related to those
researches on data structure. Replacing linear search with a tree traversal yields
benefits for reducing not only ST but also DT by avoiding redundant pattern
searching (Arya et al., 1998; Bentley, 1975; Friedman et al., 1977; Grother et
al., 1997; Guttman, 1984). Another scheme to reduce the ST is to improve the
termination condition of searching procedure. Masuyama et al. (1999) used an
enforced termination condition on the basis of a branch-and-bound algorithm.
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Their approach reduced the amount of computation from a few percent to 30
percent. In addition to the techniques introduced above, many other approaches
were suggested such as the “approximated” NN rule (Arya et al., 1998; Indyk,
1998), the “condensed” NN rule (Hart, 1968), and the “reduced” NN rule (Gates,
1972). See more in this context (Berchtold et al., 1997; Borodin et al., 1999;
Ferri et al., 1999; Johnson et al., 2000; Kleingberg, 1997; Tsaparas, 1999) and
also therein.

One of the well-developed methods above can easily reduce (DT + ST) of time
complexity of naive NPPS. This falls on the second M of the naive algorithm
complexity O(M-M). On the contrary, our efforts focus on reducing the first M,
namely, reducing the number of patterns which have to evaluate its neighbors.
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CHAPTER 5

Fast Pattern Selection
Algorithm

In this chapter, we propose fast NPPS which evaluates the patterns near the
decision boundary only. We also provide its time complexity analysis.

5.1 Fast NPPS

Naive NPPS evaluating kNNs for M patterns has time complexity of O(M?),
so the pattern selection process itself can be time-consuming. To accelerate the
pattern selection procedure, let us consider the third neighborhood property, “the
neighbors of a pattern located near the decision boundary tend to be located near
the decision boundary as well.” Assuming the property, one may compute only
the neighbors’ label entropy for the patterns near the decision boundary instead
of all the training patterns. A pattern is expanded or a pattern’s neighbors are
evaluated when its Neighbors_Entropy is positive. With an initial set of ran-
domly selected patterns, we evaluate only the neighbors of a pattern satisfying
[Expanding Condition]
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Neighbors_Entropy(Z, k) > 0

in the next step. This successive neighbors only evaluation of the current pat-
tern set is repeated until all the patterns near the decision boundary are chosen
and evaluated.

For better understanding, Fig. 5.1 presents a toy example. Let us assume J = 2,
k =3, and B = 1. At the initial stage shown in Fig. 5.1.a, three patterns 2*, #2,
and 2% are randomly selected. They are marked as outlined circles or squares.
Neighbor searching is represented by dotted arrows. After its neighbors’ label
composition is evaluated, Z' is not expanded since it does not meet the Expand-
ing Condition. On the other hand, #2 and #° are expanded. #2 satisfies the
Selecting Condition as well as the Expanding Condition. Thus, it is added to the
selected pattern set. #°, however, does satisfy the Expanding Condition only.
The patterns like 2! are depicted as “gray” circles or squares, Z2 as “black solid”
and 23 as “double outlined” in the next stage. Now in Fig. 5.1.b, #*, #°, #° and
Z7, #%, #° which are the neighbors of % and 2%, respectively, are evaluated.
Among them, #* is excluded from expanding, while the rest are all selected and
expanded in Fig. 5.1.c. Neighborhood relationship is more than somewhat mu-
tual, hence expanding is conducted only once per pattern to avoid redundant
evaluation. Therefore, only those patterns that were not evaluated before such

as 219, #1, 2, and #'3 are evaluated as shown in Fig. 5.1.c. Similarly, z'°
and ' are not expanded, and #'' and #'? are added to the selected pattern

set, and their neighbors Z'* and #'® are evaluated in the last stage, Fig. 5.1.d.

Fast NPPS is shown in Fig. 5.2 using notations displayed in Table 5.1.

5.2 Time Complexity Analysis

In this section, we show that fast NPPS terminates within a finite number of

steps, and that its time complexity is significantly smaller than that of naive
NPPS.
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Class 1

u] Class 2 o Class 2

a. The first stage b. The second

Class 1 ° Class 1 °

u] Class 2 o Class 2

c. The third stage d. The fourth stage

Figure 5.1: A toy example for fast NPPS: the procedure starts with randomly sampled
patterns from the initial stage (a), and gets at the final stage (d). “Outlined” circles
or squares are the patterns to be expanded (to find its neighbors or to evaluate its
neighbors). Among them the selected patterns are marked as “black solid” while
expanded but not selected ones as “double outlined”. Neighbor searching is represented
as dotted arrows.
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FastNPPS (D, k) {

[0] Initialize DS with randomly chosen patterns from D.
Constants k and J are given. Initialize ¢ and various sets as follows:
i— 0, S2—0 82 —0 8 0

while D{ # () do
[1] Choose Z satisfying [Expanding Condition].
D. — {& | Neighbors_Entropy (¥,k) > 0, ¥ € Di}.
Di — D! — D;.

[2] Select Z satisfying [Selecting Condition].
D! «— {& | Neighbors_Match (&, k) > 8/J, & € DL}.

[3] Update the pattern sets.
SiFt — 8¢ UDE : the expanded,
Sitl 8¢ UD? : the non-expanded,
S+l — 8*UD! : the selected.

[4] Compute the next evaluation set D5
DIt — U ENN(Z) — (S5 usih.
FeD},
[5] i i+ 1.
end
return S°

Figure 5.2: Fast NPPS
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Table 5.1: Notation

Symbol Meaning
D the original training set whose cardinality is M
D} the evaluation set at " step
D} a subset of DE, the set of patterns to be “expanded” from D}
each element of which will compute its k nearest neighbors
to constitute the next evaluation set, Di?
D& a subset of DE, the set of patterns “not to be expanded” from DE,
or D = D} — D}
D} the set of “selected” patterns from D? at i*" step
. -1
Se the accumulated set of expanded patterns, |J D2
j=0
. i-1
Sy the accumulated set of non-expanded patterns, |J D%
j=0
. i-1
S* the accumulated set of selected patterns, |J DJ
j=0
the last of which S is the reduced training pattern set
ENN(Z) the set of k nearest neighbors of &
B the set of patterns located in the “overlap” region
characterized by Neighbors_Entropy (Z,k) > 0
B* the set of k nearest neighbors of patterns belonging to B

Lemma 5.1 Different evaluation sets are disjoint:

D.NDL =0, Vi#j. (5.1)

Proor. Consider step [4] of the algorithm shown in Fig. 5.2,

D, =

Since S¢ and Si are defined as (

results in

J ENN@) | - (S, usi). (5.2)
zeDi !

i—1 . i—1 .
U D{,) and <U Di) respectively, their union

Jj=0 Jj=0

i—1 i—1
s,us,=|JDLuDL)=|(JDI]|. (5.3)
j=0 j=0

25
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By replacing (S% US%L) in Eq.(5.2) with Eq.(5.3), we get

i—1

D= [(J NN@) |- |(JDI]|. (5.4)
zeDi ! j=0

Eq.(5.4) clearly shows that DY does not share patterns with any of its earlier

sets DI, j=0,...,i— 1.

Lemma 5.2 The union of all DY ’s is equivalent to the set of kNN’s of the
union of all D! ’s.

(0 DQ) = U ENN(Z) | . (5.5)
i=1

— v —1
ZeDJUD!U---UDg

PRrROOF. From Eq.(5.4) in Lemma 5.1, we get
n ) n n i—1 .
Uoi=UJ| U #NE) |- D! | . (5.6)
i=1 i=1 \zeDi ! i=1 \j=0

Since in general

U eNN@) || U eNN@E) | = J kNN (5.7)

TEA, TEA ZeA1UA,
holds, we get
n n—1
(U D;) = U ENN(Z) | - (U D@) . (5.8)
i=1 #eDYUDLU--UD5 ! i=0
Eq.(5.8) can be rewritten in the form of

(L_Jl Di) = U ENN(7) | [ (L_J1 D2>C- (5.9)

ZeDQUDLU--UDgZ ™! i=0
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n—1
If we union ( U D;) to both sides of Eq.(5.9), then
=0

(;»CJODQ - U ENNG@) | [ (U Di) (5.10)

#eDUDLU---UD2 ™! i=0

n—1 .
results. Since D, C | ENN(Z), i = 1,...,n, < U D;)7 the last n — 1
ZeDi™t i=1
components of the second factor of the right hand side may vanish. Then, we

finally have

<O Dé) b= U ENN(Z) | DY, (5.11)

#eDYUDLU---UDS !

If we consider only the relationship after the first iteration then DY from both
sides of Eq.(5.11) is not to be included. Now, the lemma is proved.

Lemma 5.3 Every expanded set D! is a subset of B, the set of patterns
in the overlap region.

D. C B, Vi (5.12)

PROOF. Recall that in the proposed algorithm, D! is defined as

D! = {# | Neighbors_Entropy (&,k) > 0, ¥ € DL}. (5.13)
Compare it with the definition of B

B = {& | Neighbors_Entropy (Z,k) > 0, Z € D}. (5.14)

Since D%’s are subsets of D, D%’s are subsets of B.
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Lemma 5.4 Different expanded sets DE ’s are disjoint.

D.NDL =0, Vi#j (5.15)

PROOF. Every expanded set is a subset of the evaluation set by definition (see
step[1] in fast NPPS, Fig. 5.2)

D: C D, Vi. (5.16)

By Lemma 5.1, D%’s are disjoint from others for all i’s. Therefore, their respec-
tive subsets are disjoint, too.

Theorem 5.5 Termination of the Algorithm
If the while loop of the proposed algorithm exits after N iterations, then N
is finite.

PROOF. We show that N < oco. Inside the while-loop of the algorithm (Fig. 5.2),
condition DiHL # () holds. Therefore, DE # @), i = 0,..., N — 1. That means

i—1

n(DL) > 1, i = 0,...,N — 1. Since S! is defined as |J D, and DJ’s are
=0

disjoint (Lemma 5.4), we get

i—1
n(8)) =Y n(DJ). (5.17)
=0
Since n(DY) > 1, i = 0,..., N — 1, n(S!) is monotonically increasing. In the

meantime, the union of all the DJ’s generated in the while loop is bounded by
B (Lemma 5.3). So, we obtain

N-1
| picB. (5.18)
j=0

Now, Lemma 5.4 leads us to

> n(D}) < n(B). (5.19)
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Combination of Eq.(5.17) and Eq.(5.19) results in
n(SY) < n(B). (5.20)

Since n(B) < M and finite, n(S)) is finite. Thus, N is finite.

Theorem 5.6 The Number of Pattern Evaluation

The number of patterns whose kNNs are evaluated is (r - n(BY) + n(B¥)),
where B is the complement set of B or D — B, and r is the proportion of
initial random sampling, (0 <r <1).

PROOF. The number of patterns whose kNNs are evaluated is denoted as
N

> n(DY). Let us first consider cases from i = 1 to N. We have
i=0

Mz

N
=n <UD > by Lemma 5.1

=1

ENN(Z) by Lemma 5.25.21)

aceDOUD1 uU---upd -t

<U ENN(Z ) by Lemma 5.3

:L’GB

Let us include the case of i = 0.

N
Zn ) < n(DY) +n(BT), (5.22)

=0

where n(DQ) is approximately r - n(D) because DY is randomly chosen from
D. In the meantime, some patterns of DY are already counted in n(B™). The
number of those pattern amounts to n(DO) since DY = {7 | Neighbors_Entropy
(#,k) >0, € DY} and DY C B C B*. To get a tlghter bound, therefore, we
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exclude the duplicated count from Eq.(5.22):
N
S n(DL) < n(DY - DY) + n(BY), (5.23)

=0

where n(D? — DY) denotes the number of the patterns which do not belong to
B. It amounts

n(Dg — DY) = n(DY) — n(Dg)

n(Dg) — n(Dg) -

Q

(5.24)

=r-n(D)—r-nD)-

=T n(Bc)7

where DY C D?. Thus, we get the following bound by Eq.(5.21) and Eq.(5.24):

N
> n(DL) <r-n(BY) +n(BY). (5.25)
=0

The time complexity of fast NPPS is (r - b¢ +bT) - M where b€ = n(B%) and
bt = n(BT). Practically, b° is almost as large as M, i.e., b ~ M. But the
initial sampling ratio r is usually quite small, i.e., r < 1. Thus, the first term
r - b“ M may be considered insignificant. In most real world problems, bT is
just slightly larger than b. Thus, the second term bt M can be approximated
to bM. In short, (r - b +bT)M can be simplified as bM, which is much smaller
than M? since b < M. Actually, b is an increasing function of k by definition.
But, provided that we get informed about the number of patterns in the over-
lap region, v, then we can find a right value of & which makes b ~ v. Since
b approximates v, the complexity of fast NPPS is approximately O(vM). The
relationship between k, b, and v will be dealt with in the next chapter in detail.

Fig. 5.3 depicts the theoretical relationship between the computation time and
v of the two algorithms. The computation time of naive NPPS O(M?) does
not change as long as M is fixed. Meanwhile, that of fast NPPS is linearly
proportional to v. Therefore, fast NPPS is always faster than naive NPPS
except in the case of v = M.
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0 02M 04M 0.6M 0.8M M
Degree of Overlap (v)

Figure 5.3: Theoretical relationship between the computation time and v: the com-
putation time of fast NPPS is linearly proportional to v when M is fixed.
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CHAPTER 6

How to Determine the
Number of Neighbors

In the previous chapter, we briefly mentioned on the effect of k, in particular,
on the time complexity of the fast NPPS. But also in naive NPPS, the value of
k is a parameter to be set. The value of £ commonly affects both algorithms
in the following manner. Too large a value of k results in too many patterns
being selected. Hence no effect on the training pattern reduction is achieved.
Too small a value of k, on the other hand, may degrade the SVM prediction
accuracy since too many would-be support vectors are not selected. Therefore,
we present a procedure for determining the suitable value of k here. We first
identify a subset of the training pattern set D that matches the overlap region
R as closely as possible. Definitions are provided for the classifier f(Z), training
pattern set D, overlap pattern set V, overlap region R, as well as k nearest
neighbors’ pattern set By, the B now specified by k. Second, some properties of
By as well as the proposed procedure are presented. Finally, an estimate of the
cardinality of V is presented. The value of k is determined from the estimated
cardinality of V.
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Class 2 f(f):() _ N

Figure 6.1: Two class classification problem where circles belong to class 1 while
squares belong to class 2. The area enclosed by the two dotted lines comprise
the overlap area.

6.1 Overlap Region and Overlap Set

Consider a two-class classification problem whose classes are C; and Cy (see
Fig. 6.1), with classifier f(Z) such that

-0y if f(

1@ :{ i Cy if f(f?) <0, (6.1)

where f(Z) = 0 is its decision boundary. Let D denote the set of training
patterns. Let us define “overlap patterns” as the patterns that are located in
the “other” side of the decision boundary since the class distributions overlap.
For simplicity, genuine noisy patterns will be considered as overlap patterns.
They are shown in Fig. 6.1 as squares located above f(Z) = 0 and circles located
below f(#) = 0. Let R denote a hypothetical region where the overlap patterns
reside, the area enclosed by the dotted lines in Fig. 6.1. Note that R contains
not only the overlap patterns, but also the “close non-overlap” patterns—those
patterns that are located close to the decision boundary, yet in the “right” side
of the decision boundary. Let V denote the intersection of D and R, i. e. the
subset of D which comprises overlap patterns and close non-overlap patterns.
There are six patterns in class 1 side and another six patterns in class 2 side in
Fig. 6.1. The cardinality of V is denoted as v.
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6.2 Pattern Set with Positive Nearest Entropy

Now, let By, denote a subset of D whose elements have positive k nearest neigh-
bors’ entropy values (see Fig. 4.1 and Table 5.1):

B), = {# | Neighbors_Entropy(Z, k) > 0, ¥ € D}. (6.2)

Let us consider how k affects By and pattern selection based on it. Too large a
value of k results in excessive inclusion of the training patterns. In other words,
too many patterns are selected. If k = M — 1, then By becomes D. Suppose
that pattern & belongs to Cy. Then its LabelProbability(Z, k) is

-1
P1:m177
my+mo —1

Py=— 2

7’)7,1—%-’)’)12—17

where m; denotes the number of patterns belonging to C;, (j = 1,2). Thus,
we have P; < 1 for all j’s. If pattern & belongs to Cy, both P, and P» are less
than 1. It should be noted that Neighbors Entropy(Z, k) in Fig. 4.1 is always
positive unless j exists such that P; = 1. Therefore, all the patterns in training
set D have positive Neighbors_Entropy values, regardless of their location in
the input space, thus become a member of By;_;. Every pattern from D is
selected for training (see Fig. 6.2.a). Too small a value of k, e. g. k = 2,
on the other hand, results in insufficient inclusion of the patterns within the
overlap region. Consider patterns #', 22, and #° in Fig. 6.2.b, lying within the
overlap region. They all belong to overlap pattern set V, but 2 and 2 do
not belong to By while #! does. First, £! belongs to B, since its two nearest
neighbors 72 and 7% belong to different classes, which results in P; = P, = 1/2
and Neighbors_Entropy(Z*, k) becomes 1. Second, the two nearest neighbors
of #2, ' and #*, both belong to class C;, which results in P, = 1, P, = 0,
and Neighbors_Entropy(#2, k) is 0. So, #* does not belong to B,. Third, for
the same reason, &> does not belong to By, either. The patterns in the overlap
region are critical to SVM training, since they are likely to be support vectors.
Therefore, their exclusion could degrade the SVM prediction accuracy.

In short, By, larger than V merely increases the SVM training time by introduc-
ing redundant training patterns. In contrast, By smaller than V could degrade
the SVM accuracy. Therefore, our objective is to find the smallest By that
covers V. The following property of By, results in a simple procedure.
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Figure 6.2: Effect of k£ on B: solid dots and squares belong to B.

Lemma 6.1 Every k'" entropy pattern set belongs to (k + 1) entropy
pattern set:

B, CBjy fork=2,-- M—2. (6.3)

PROOF. Denote Pf as the probability that k; out of k nearest neighbors belong
to class Cj. If & € By, then it means Neighbors_Entropy(Z, k) > 0. A positive

Neighbors_Entropy is always accompanied with Pf = % < 1, Vj. Therefore,
ki <k, Vj. (6.4)
Adding 1 to both sides yields
(kj +1) < (k+1), Vj. (6.5)

Suppose (k+1)t" nearest neighbor belongs to Cjj«. Then, for j*, /4:)g +1<k+1
holds while for j # j*, k; < k + 1 holds. Therefore, both ijl < 1 and

P;”l < 1, Vj # j*. We have Neighbors_Entropy(Z, k + 1) > 0 which indicates
Z € By4;. From Lemma 6.1, it follows that by, the cardinality of By, is an
increasing function of k. Thus, optimal k, k*, is computed as

E*=min{k | by > v, k=2, ..., M —1}. (6.6)
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6.3 Estimation of the Size of Overlap Set

Now, we need to estimate v. Let us assume that each training pattern is inde-
pendently sampled from a training data distribution. Then, the probability that
v patterns of M training patterns fall within region R is given by the binomial
law,

M!

Pro) = St <PR(5))U (1 - PR(:E)) va’ (6.7)

where Pr(Z) denotes the probability that a pattern Z lies in R. We now can
calculate v as

v = MPg(). (6.8)

Here Pr(Z) of & can be described as
2
Pr(¥) =) P(f€R,C)), (6.9)
j=1

where P(Z € R, C}) is the joint probability of & belonging to class C; and lying
in R. Fig. 6.3.a illustrates the schematic probability densities in the overlap
region R. Note that R contains correct patterns as well as overlap patterns.

We divide region R into Ry and Ry as follows (see also Fig. 6.3.b):

R, = {ZeR|[(Z) >0},
x

R, = {ifeR|f(#) <0} (6.10)

Eq. (6.9) can be rewritten as

Pr(¥)=P(@ € R,C1)+ P(Z € R,Cy)
P( RlURQ,C1)+P($€R1UR2,CQ)
E T e Rl,CQ + P(l‘ S RQ,Cl) (611)

ZER1,01 +P($ER2,CQ)
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Figure 6.3: Schematic probability densities of overlap region.

The first parenthesis and second parenthesis denote the probabilities that the
patterns located in R are incorrectly and correctly classified, respectively. If R
and R contain roughly the same number of correct and incorrect patterns, the
probabilities of the two parentheses become identical. Since all the overlap pat-
terns were included in R, the first parenthesis actually refers to the misclassified
error of classifier f(#). Now, Eq. (6.11) can be simplified as

Pgr(¥) = 2P(error), (6.12)

and Eq. (6.8) becomes

v = 2M P(error). (6.13)

6.4 Procedure to Determine the Number of Neigh-
bors

Now, the procedure for determining the optimal k value is shown in Fig. 6.4.
Simplicity and computational efficiency are the reasons for using I-NN rule to
estimate P(error).
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[1] Apply I-NN rule over training set D.
[2] Estimate P(error) with P(error), the training error rate of [1].

[3] Calculate ¢ according to Eq. (6.13):
© = 2M P(error).

[4] Find k* according to Eq. (6.6):
E*=min{k | by >0, k=2, ..., M -1}

Figure 6.4: Procedure to determine the value of k
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CHAPTER 7

Invariance of Neighborhood
Relation under Input Space to
Feature Space Mapping

NPPS described in the previous chapters operates in input space while decision
boundary of SVM and support vectors are all defined in feature space. Since the
mapping from input space to feature space is highly nonlinear and dimension
expanding, distortion of neighborhood relation could occur. In other words,
neighborhood relation in input space may not be preserved in feature space. If
that is the case, local information in input space may not be correct in feature
space, thus impairing the effectiveness of NPPS.

There are two approaches to solve this problem. The first involves running NPPS
in feature space, and the second involves proving that the neighborhood relation
is invariant under the input to feature space mapping. Let us consider the first
approach. In order to compute the distance between two patterns, one has to
have the optimal kernel function and hyper-parameters, which are usually found
by trial-and-error accompanying with multiple trials of SVM training with all
patterns. Obviously, that is not acceptable since the purpose of pattern selection
is to avoid training SVM with all patterns. On the other hand, in the second
approach, NPPS can be executed only once in input space since it does not
involve searching for optimal kernel and hyper-parameters. Thus, we take the
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second approach in this paper by showing that the neighborhood relation is
invariant under the input to feature space mapping. Through the theoretical
justification for the second approach, we can avoid the computational burden
which could be incurred by taking the first approach.

The chapter is organized as follows. In section 7.1, we provide proofs on the in-
variance of the neighborhood relation under the input to feature space mapping
through two typical kernel functions: RBF and polynomial. In section 7.2, we
remark some issues on the proofs.

7.1 Proofs on Validity of Pattern Selection in
Input Space

As described in previous chapters, NPPS operates in input space (I) using local
information there. However, decision boundary of SVM and support vectors are
all defined in feature space (®). Since the mapping I — & is highly nonlinear
as well as dimension expanding, we have to ensure that neighborhood relation
in input space be preserved in feature space. We now provide proofs on that
the k nearest neighbors of a pattern in the input space I are also the k nearest
neighbors of the pattern in the feature space ®.

Definition 7.1 (NN Invariance) Let kNN (Z) be the set of k nearest
neighbors of a pattern & in the input space I, and kN Ng (Z) be that of
the pattern ®(Z) in the feature space ®. If both sets are identical

kNN () = kNN (%), Vk>0,VZ

the invariance of the k nearest neighbors (NN) holds.

Finding the nearest neighbors necessarily implies distance calculation. In terms
of the squared Euclidean distance which is the most commonly used distance
measure, the distance among patterns in the input space I is
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The distance in the feature space ® is similarly drawn as
|B(Z) — 2()|]* = B(F) - (Z) + D) - D(3) — 28(F) - 2(7) (7.2)

where ®(-) is a mapping function from the input space to the feature space,
®(-) : I — ®. One might obtain ®(Z) directly but the formula is extremely
complicated. Thanks to the fact that the mapping ®(-) always appears within
a form of inner product during SVM QP calculation, one thus uses kernel trick
which substitutes the inner product to a kernel function, ®(Z) - ®(y) = K (&, ).
If this kernel trick is applied to Eq.(7.2), then the distance in the feature space

becomes
|2(Z) — 2> = K (Z,%) + K (4,9) — 2K (Z,7).- (7.3)

We will consider the following typical kernel functions:

2 HJI yH2
RBF: K (& = exp ,
( 7y) e ( 202

polynomial: K (Z,y) = (Z -+ 1)".
(7.4)

As long as the relative distance magnitude of the input space is preserved in
the feature space ® for all patterns, the composition of the k nearest neighbors
of a pattern will be invariant. We now define prozimity invariance.

Definition 7.2 (Proximity Invariance) For the patterns &, 7, and #»
(Z # 41, T # Yo, and 71 # ¥2) in the input space I satisfying

12 =7l <112~ 7%,

the invariance of proximity holds if they preserve their relative distances
in the feature space ®

12(F) = 2@)II* < [|12(7) - 2(72)]I".

It is obvious that KNN invariance holds if prozximity invariance holds. The
following two theorems provide proofs on ANN invariance for the two kernels,
RBF and polynomial, by inducing proximity invariance for each of them.
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Theorem 7.3 (ANN Invariance for RBF Kernel) kNN  invariance
holds when the mapping function ®(Z) is defined such that

o(7) - ©(§) = K (T,§) = eap (_%) _

PROOF. Let 1 and #» be two distinct neighbors of & with || —#1|)* < ||Z — 72||%,
i.e., 71 is closer to & than ¢,. Suppose the invariance of proximity does not
hold for mapping function ®(Z), i.e., ||®(Z) — ®(71)[|*> > ||®(Z) — ®(72)||*>. Using
Eq.(7.3), one can rewrite the inequality as

K(Z,%) + K (ih,9) =2 K (Z,5h) =2 K(Z,7) + K (i2,82) — 2 K (Z,%2) -

-,

Since K(a,d)=1 and K(d,b) >0 V d, 5, the inequality is simplified as

Plugging the definition of RBF kernel, we obtain

= =2 = o2
T — Y1 T — Y2
cop (VLB < e (B,

which in turn can be simplified into
12— gill* > [I& — g2l*.

This is contradictory to our initial assumption that 4 is closer to & than .
Thus the assumption that the invariance of proximity does not hold is not true.
Therefore, NN invariance holds for RBF kernel.

Theorem 7.4 (KNN Invariance for Polynomial Kernel) kNN  in-
variance holds when the mapping function ®(Z) is defined such that

(Z) - 2(y) = K(&,9) = (£-§+ 1),

—1).

and training patterns are all norm vectors (|| - |
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PROOF. Let 1 and 7> be two distinct neighbors of & with ||Z —#1|* < ||Z — %2||?,
i.e., 71 is closer to & than ¢,. Suppose the invariance of proximity does not
hold for mapping function ®(Z), i.e., ||®(Z) — ®(#)|]* > ||®(Z) — ®(72)]|*>. Using
Eq.(7.3), one can rewrite the inequality as

K(Z,7) + K (§h,5) -2 K(Z,51) 2 K(Z,7) + K (§2,52) — 2 K (7, 72).

Since K(d,d) = 2P from @ - @ = 1, the inequality becomes

Plugging the definition of polynomial kernel, one obtains
@5+ 1) < (@ + 1.

The polynomial degree p can be eliminated from both sides since norm vectors
always satisfy —1 <ad-b<1,Vd#b, and (a-b+ 1) > 0. Therefore, we get

—

- .

Sii

T <
The inner product between the patterns can be represented
ZI [[g2]] cos 61 < ||| ||2]] cos 62

where 67 and 65 denote the angles between ¥ and ¥;, and between Z and >,
respectively. Since ||Z|| = ||71]| = ||72]| = 1, finally one has

cos 01 < cos 02,

and hence 67 > 65. In other words,
- L2 - 2
12— yill” > (|7 — 2",

which is contradictory to an initial assumption that ¢ is closer to Z than .
Thus the assumption that the invariance of proximity does not hold is not true,
which yields that NN invariance holds for polynomial kernel.
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Note that theorem 7.4 does not hold without the norm vector assumption (||-|| =
1). Counsider three patterns, & = 1, ¢; = 2, and ¢o = —1 in the input space (1-
dim). They satisfy

IZ—@ll? < 17—l

i.e., i1 is closer to Z than i». Let us consider p = 2 where ®(a)-®(b) = K(a@,b) =
(@-b+1)?. The distance between & and ¢ in the feature space can be computed
as

18(@) — 2> =|8(1) - 2(2)]*
=K(1,1) + K(2,2) — 2 K(1,2)
=(1-14+1)*+2-2+1)*-2(1-2+1)
=4+25—-18
=11.

The distance between & and > in the feature space can be similarly computed,
resulting in 8. Thus, we have ||®(Z) — ®(71)||* > ||®(F) — ®(72)||*, which violates
the proximity invariance.

7.2 Remark

In case of polynomial kernel in section 7.1, we assumed that all patterns of
training set are norm vectors (|| -|| = 1), which could be somewhat restrictive.
However, it should be noted that in some machine learning applications such as
text mining, it is conventional to preprocess a training set by scaling & = Z/||Z||
so as to calculate a cosine distance dist(Z,5) =1— 2’ - ¢.

Even though the proof should be similar in nature, we did not deal with sig-
moid kernel here since it is a kernel with innate restrictions. Sigmoid kernel is
a conditionally positive definite (CPD) kernel which satisfies Mercer’s condition
only for some values of the hyper-parameters p and §, and only for norm vec-
tor (Scholkopf and Smola, 2002; Vapnik, 1999). Furthermore, sigmoid kernel
has rarely been used since it has two hyper-parameters. It is a kernel devised
for showing that SVM includes traditional MLP (multi-layer perceptron) neu-
ral network. A recent study of Lin and Lin (2003) on sigmoid kernel is worth
reading. Even though sigmoid kernel seems to work well in a certain condition,
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it is not better than RBF. As RBF has properties of being PD and having fewer
parameters, there is no reason to use the sigmoid.
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CHAPTER 8

Applications with Small to
Medium Scale Data sets

To confirm the efficiency of the proposed algorithm, experiments from different
viewpoints were conducted section by section. In the first section, we show
the empirical results of the time complexity analysis of fast NPPS, introduced
in section 5.2. In the second section, using the three synthetic problems, we
examined whether the proposed method to determine k in section 6 gives a
reasonable estimation for v accompanied by SVM accuracies. The experiments
in the third section emphasize how much time the proposed algorithms can
reduce—not only for individual SVM training but also for SVM model selection.
If we consider [ candidate parameter combinations, then, the total time required
to find out the best combination is [ times the individual SVM training time.
Individual SVM training time reduction, thus, leads to model selection time
reduction. In the fourth section, we compared the proposed algorithm with a
similar approach (Almeida et al., 2000). In the last section, we present the
results of three real world problems.

To preview table 8.1 would be helpful to perceive the overall empirical results
before going into individual sections. ‘*’ stands for that the SVM training of
corresponding problems was conducted with a standard QP solver, i.e., Gunn’s
SVM MATLAB Toolbox. On the contrary, because of heavy memory burden
and lengthy training time caused by large training set, others were trained
with an iterative SVM solver known as one of the fastest solvers, i.e., OSU
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SVM Classifier Toolbox (Kernel-Machines.org). All experiments were carried
out on a Pentium 800 MHz PC with 256 MB memory. The table includes the
results obtained from tests with three artificial datasets, and 5 real-world bench-
marking datasets from (UCI Repostory) and (MNIST). The results show that
NPPS reduced SVM training time up to almost two orders of magnitude with

virtually no loss of accuracy.

Table 8.1: Overall Results

Num. of | Num. of Execution Test
Training | Support Time Error
Patterns | Vectors (sec) (%)
Continuous XOR *
ALL 600 167 | 454.83 9.67
SELECTED 179 84 4.06 (=3.85 + 0.21) 9.67
Sine Function *
ALL 500 250 | 267.76 13.33
SELECTED 264 136 8.96 (=8.79 + 0.17) 13.33
4x4 Checkerboard
ALL 1000 172 3.81 4.03
SELECTED 275 148 0.41 (=0.09 + 0.32) 4.66
Pima Indian Diabetes
615 330 | 203.91 29.90
SELECTED 311 216 28.00 (=27.86 + 0.14) | 30.30
Wisconsin Breast Cancer

546 87 2.14 6.80
SELECTED 96 41 0.13 (=0.03 + 0.10) 6.80

MNIST: 3-8
ALL 11982 1253 | 477.25 0.50
SELECTED 4089 1024 | 147.73 (=49.84 + 97.89) | 0.45

MNIST: 6-8
ALL 11769 594 | 222.84 0.31
SELECTED 1135 421 58.96 (=14.69 + 44.27) | 0.31

MNIST: 9-8
ALL 11800 823 | 308.73 0.41
SELECTED 1997 631 86.23 (=26.61 + 59.62) | 0.43
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8.1 Time Complexity of Fast NPPS

We showed that fast NPPS runs in approximately O(vM). In this section, an
empirical time complexity is measured.

8.1.1 Uniform Distribution Problem

A total of M patterns, half from each class, were randomly generated from a
pair of two-dimensional uniform distributions:

o= 10 (0sg

= {210( i

D } (8.1)

We set v to every decile of M, i.e. v=0, 0.1M, 0.2M, --- , 0.9M, M. Fig. 8.1
shows the distributions of v = 0.3M (Fig. 8.1.a) and v = 0.8M (Fig. 8.1.b).
The larger v values correspond to more overlap. We set out to see how v value
determines the computation time of fast NPPS. In particular, it is of interest if
the computation time is linearly proportional to v, as predicted in the analysis.

Fig. 8.2 shows the actual computation time for various values of v when (a)
M = 1,000 and (b) M = 10,000, respectively. For both cases, it is clear that
the computation time of fast NPPS is exactly proportional to v. On the other
hand, that of naiwve NPPS is constant regardless of v. The reason why it is
linearly proportional is because the number of evaluated (expanded) patterns
increases proportional to v as shown in Fig. 8.3.

8.2 Procedure to Determine £k

To show the validity of the procedure to determine k introduced in chapter 6,
we ran experiments on three synthetic problems.
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Figure 8.1: Two uniform distributions’ overlap: the dark gray area is the overlap
region which contains v patterns. The degree of overlap or the number of patterns in
the overlap region, v, is set to every decile of training set size, M. (a) and (b) depicts
when v = 0.3M and v = 0.8M, respectively.
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8.2 Procedure to Determine k
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Figure 8.3: Actual percentage of expanded/selected patterns for various values of v

Table 8.2: Estimation of v for various overlap degrees

v 100 200 300 400 600 700 800 900 1000
D 112 202 334 414 602 706 806 882 942
by~ 115 209 339 429 606 708 816 906 972
k* 5 4 5 4 5 5 5 5 5

8.2.1 Uniform Distribution Problem

First, we examined whether the proposed method gave a reasonably accurate
estimation for v, using Uniform distributions’ overlap with M = 1,000 (see

Eq. (8.1)).

10 training pattern sets corresponding to 10 different numbers of

overlap patterns were generated, i.e. v = 100, 200, -- -, 900, 1000 (0.1M, 0.2M,
-+, 0.9M, M). Table 8.2 provides the estimation results for various values of v.
The second row shows the estimated values of 9. They are almost identical to the
true values of v. The proposed method gave a reasonably accurate estimation of
v. The last two rows show the smallest b larger than o, and the corresponding
value of k. Approximately, k = 5 seems to cover the overlap region regardless of
the different degrees of overlap. The optimal value of k is likely to be dependent
on the underlying distribution rather than the degree of the overlap itself.
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8.2.2 Continuous XOR problem

The second experiment was on a Continuous XOR problem. The patterns of
two classes were defined as follows (see also Fig. 8.4.a):

Cy = {:E’|9E’€ClAU013, [:g]gfg[

Cy = {9‘5|fngAUCgB, [jg]gfg[

] } (8.2)

where C4, C1p, C24 and Cyp were

cu= {1 o D
o= {rIn([ ][0 o D))
Ca= LN ([T o D)} (33)
Can= {a v ([ ][ o5 )}

A total of 600 training patterns, 300 from each class, were generated: There are
about 33% training patterns in the overlap region (v = 199). A total of 1000
test patterns were generated from the statistically identical distributions to its
training data distributions.

The proposed method estimated v as 208 (6=208). And the value of k was set as
5 since bs was the minimum over 208 (k*=5 and by-=217). See Fig. 8.5.a. 179
patterns were selected after about 217 patterns were evaluated, when k = 5 (see
Fig. 8.4.b). In order to test whether the selected pattern set taken from Bj-
would give rise to a reasonable SVM performance, we generated 29 selected
pattern sets corresponding to k = 2, , 30, and then we computed the SVM
test error rates of the 29 sets. The 11.4% reference test error rate was obtained
from the SVM trained with all 600 training patterns, among which 162 were
picked as support vectors. We set the SVM error tolerance value at C' = 20 and
used the RBF kernel with width parameter ¢ = 0.5. SVM parameters, C' and
o were defined in Eq. (3.1) and Eq. (3.2). The parameter values were fixed over
all 30 SVMs. We used Gunn’s SVM Toolbox which was built by standard QP
routines in Matlab (Kernel-Machines.org).

Fig. 8.5.a shows that, when v is fixed, the increase of k leads to the increase
of br. The number of selected patterns was slightly less than by, but it also
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a. All patterns (600 patterns) b. Selected patterns (179 patterns, k=5)

Figure 8.4: Continuous XOR with four Gaussian distributions: Selected patterns
are outlined. Patterns are normalized ranging from -1 to 1.
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Figure 8.5: Continuous XOR: Number of patterns and SVM test error rate
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a. SVM with all patterns b. SVM with selected patterns (k=5)

Figure 8.6: Patterns and SVM decision boundaries of Continuous XOR prob-
lem (C = 20, o = 0.5): decision boundary is depicted as a solid line and the
margins are defined by the dotted lines in both sides of it. Support vectors are
outlined.

gradually increased almost parallel to the curve of by. The number of support
vectors was also given at the bottom. For k > 5, it converged to about 78, which
is only one half of the 162 SVs that were selected when trained with the full
training pattern set. That is, only a subset of training patterns affected SVM
training regardless of the number of training patterns. Meanwhile, only 78 SVs
were adopted because “Neighbors_Match criterion” identified and removed those
patterns that were suspected to be overlap patterns (see Fig. 4.1 and Fig. 5.2).
Those overlap patterns were adopted as SVs in the original SVM by its error
tolerance parameter, but they hardly contributed to margin constitution.

Fig. 8.5.b displays the test error rates for 30 different SVMs. The SVM perfor-
mance was stabilized for k larger than 5 at which the test error rate was 11.4%.
It is almost the same as the reference test error rate. The pattern sets larger
than Bj did not lead to better SVM performance since they included the redun-
dant patterns which did not contribute to SVM training. An evidence can be
found from the number of support vectors in Fig. 8.5.a. From k =5 to k = 30,
the number of support vectors did not increase much from 75 to 83 while the

number of the selected patterns increased by more than two times from 179 to
405.

Finally, Fig. 8.6 shows the decision boundaries and margins of the SVMs (a)
with all patterns and (b) with the selected patterns when k = 5. Note that the
two decision boundaries are quite similar. The selected patterns from By were
sufficient to result in the same classification accuracy as the original SVM.
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8.2.3 Sine Function Problem

The third problem is a Sine Function problem. The input patterns were gen-
erated from a two-dimensional uniform distribution, and then the class labels
were determined by whether the input is located above or below a sine decision
function.

Cy = {f|mg>sin(3x1+0.8)2, [ _2.2 } < [ 2 } < [ 2; ] },
Oy = {f| s < sin (321 + 0.8)%, [ o } < { o } < { .- } } (8.4)

To make the density near the decision boundary thicker, four different Gaussian
noises were added along the decision boundary, i.e., N(ji,s*>I) where ji is an
arbitrary point on the decision boundary and s is a Gaussian width parame-
ter (s = 0.1, 0.3, 0.8, 1.0). A total of 500 training patterns were generated,
55% of them were located in the overlap region (v = 276). Fig. 8.7.a shows the
problem. SVM parameters were C' = 20 and ¢ = 0.5 (Eq. (3.1) and Eq. (3.2)),
and 30 SVM test error rates (SVMy, k = 2,---,30 and SVM,;;) were measured
over a total of 1000 test patterns. The two graphs in Fig. 8.8 can be interpreted
in the same manner as the Continuous XOR problem. The value of v was esti-
mated as 296 (9=296) and bs was the smallest among those by’s larger than o.
Thus, the value of k was set as 5 (k*=5 and by~=302). See Fig. 8.8.a. Among
the patterns identified in Bj, 264 patterns were selected (Fig. 8.7.b). SVM test
error rate, SVMs5, was 15.0% (with 194 SVs), which was slightly better than
SVMu= 15.2% (with 255 SVs). As in the results of the Continuous XOR prob-
lem, for k£ > 5, the SVM test error rate and the number of SVs converged to
15.0% and 192, respectively. They are depicted in the Fig. 8.8.a. Fig. 8.9 shows
that the decision boundaries and margins of the SVMs and SVM,;; are quite
similar.

8.2.4 Discussion on Different Reduction Ratio

In the Sine Function problem, among the original training patterns, 264 (52.8%)
were selected, which is greater than that of Continuous XOR, 179 (29.8%). The
different reduction ratio is due to the difference in densities near the decision
boundary. Fig. 8.10 presents the relationship between distance from decision
boundary to a pattern and its value of Neighbors_Entropy. The closer to the de-
cision boundary a pattern is, the higher value of Neighbors_Entropy it has. Both
figures assure that Neighbors_Entropy, the measure we propose, is pertinent to
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Figure 8.7: Sine Function: Selected patterns are outlined. Patterns are normal-
ized ranging from -1 to 1.
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Figure 8.8: Sine function: Number of patterns and SVM test error rate
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a. SVM with all patterns b. SVM with selected patterns

Figure 8.9: Patterns and SVM decision boundaries of Sine Function prob-
lem (C = 20, o = 0.5): decision boundary is depicted as a solid line and the
margins are defined by the dotted lines in both sides of it. Support vectors are
outlined.

estimating the proximity to the decision boundary. Among the patterns with
positive Neighbors_Entropy values, the ones which meet the Neighbors_Match
criteria are selected. They are depicted as solid circles against outlined ones.
Note that solid circles are distributed nearer the decision boundary.

8.3 Training Time Reduction

The main objective of our proposed algorithm is to reduce the number of train-
ing patterns to relieve lengthy SVM training time. The proposed pattern selec-
tion algorithm can alleviate individual SVM training time. The time reduction
is more significant when we consider SVM optimal parameter searching process
which is laborious and time-consuming but necessary. In this section, we present
the experimental results from the viewpoints of individual SVM training time
reduction and model selection time reduction.

For the Continuous XOR problem and the Sine Function problem (both were in-
troduced in section 8.2), we trained 50 SVMs with all patterns and 50 SVMs with
the selected patterns from candidate combination of hyper-parameters (o, p, C).
Five RBF kernels with different width parameters (¢ = 0.25, 0.5, 1, 2, 3) and
five polynomial kernels with different degree parameters (p = 1, 2, 3, 4, 5)
were adopted. As for the misclassification error tolerance parameter, five lev-



60 Applications with Small to Medium Scale Data sets

ros

[o8 wee o 6 mo e wes

roe

06 ee 0% %0 gmoom enem

to.4 ¢ com wwen o o Fo4 ©  ® osoms o o com o oo

o2 o 0 0om om0 cmDammme 4 toz 0 ow o cmwm 0ocom woo amwa o

Value of Neighbors Entropy
8
Eog ot7,
§
L]
Value of Neighbors Entropy

Fo o oom ER o o o @ mooe -

a 1 2 3 4 5 51 7| 1} 1 2 3 4 5 B 7 g 9
L

Distance from Decision Boundary Distance from Decision Boundary

a. Continuous XOR b. Sine Function

Figure 8.10: Distance from decision boundary and Neighbors_Entropy: The
closer to the decision boundary a pattern is, the higher value of Neigh-
bors_Entropy it has. The selected patterns are depicted as solid circles against
outlined ones.

els (C = 0.1, 1, 10, 100, 1000) were used. Refer to those SVM hyper-
parameters from Eq. (3.1) and Eq. (3.2). Gunn’s SVM Matlab Toolbox was
used for SVM training (Kernel-Machines.org). The selected pattern sets from
naive NPPS and fast NPPS (with initial sampling ratio » = 0.2) were iden-
tical. SVM performances “with all patterns (ALL)” and “with the selected
patterns (SELECTED)” were compared in terms of the test error rate, the ex-
ecution time, and the number of support vectors.

The experimental results are shown in tables 8.3 through 8.6. Fig. 8.11
extracts SVM test error rates from table 8.3-8.6. In each cell, the upper num-
ber indicates the test error rate for ALL and lower for SELECTED. Gray cell
means that SELECTED performed better than or equal to ALL, while white cell
means that ALL performed better. An interesting fact is that SVM performance
with SELECTED is more sensitive to parameter variation. This phenomenon
is shown substantially with ill-posed parameter combination (white cells). For
the parameters where SVM with ALL performed well, SVM with SELECTED
also worked well.

Table 8.7 compares the best performance of each SVM. The corresponding pa-
rameter combination is marked ‘“*’ in Fig. 8.11. The SVM with the selected
patterns was trained much faster thanks to fewer training patterns. Less impor-
tant support vectors were eliminated in building the margins. Employing fewer
SVs resulted in a smaller recall time. While the computational efficiency was
achieved, the generalization ability was not sacrificed at all. Table 8.8 shows
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Table 8.3: Continuous XOR: SVM Result of All Patterns (600)
Test Error (%)
RBF Poly.
Exe. Time (sec)
Num. of SVs |0=025 06=05 oc=1 06=2 oc=3| p=1 p=2 p=3 p=4 p=5H
11.33  11.67  9.67 2533 34.33 | 51.67 10.67 11.67 10.00 10.33
C =01 506.58 506.74 496.36 470.72 470.49 |469.56 491.31 501.41 504.88 518.28
312 344 549 600 600 | 600 431 339 292 261
10.00 12.00 11.00 10.67 34.33 | 34.00 10.00 10.67 11.33 11.33
Cc=10 504.99 488.89 459.57 449.89 437.26 |469.61 472.80 480.16 491.86 496.47
194 203 322 557 600 | 598 262 216 193 185
10.00 11.33 10.00 12.00 10.00 | 31.67  9.67 10.33 11.67 12.00
c=10 511.57 464.56 442.26 424.46 418.37 |435.39 453.19 453.85 460.22 465.55
165 166 203 340 486 | 596 18 173 168 165
10.00 11.00  9.67 10.67 10.33 | 31.67 10.00 10.00 11.67 12.33
C =100 467.36 467.14 454.83 453.19 435.01 [455.77 462.31 455.28 470.87 476.04
152 159 167 215 291 | 596 170 163 159 158
10.67 10.33 11.33 10.33 10.00 | 31.67 10.33  9.67 12.33 12.67
C = 1000 490.21 478.67 475.88 473.79 460.99 [471.09 473.02 485.76 489.50 496.20
150 156 160 174 197 | 596 167 161 156 157
Table 8.4: Continuous XOR: SVM Result of Selected Patterns (179)
Test Error (%)
RBF Poly.
Exe. Time (sec)
Num. of SVs c=025 o0=05 o= o= oc=3| p= p= p=3 p= p=
11.33  29.33 50.00 50.00 50.00 | 50.00 50.00 32.67 11.67 10.67
c=0.1 5.11 495 434 439 494 | 885 439 428 428  4.29
167 175 179 179 179 | 179 172 169 165 158
10.33  12.00 31.33 50.00 50.00 | 50.00 15.67 12.33 11.33 11.00
c=10 4.72 401 483 407 401 | 7.20 400 401 3.95 4.07
99 128 165 168 179 | 179 159 133 118 110
10.00  10.33 10.00 35.33 50.00 | 50.00 10.00  9.67 10.33 10.00
c=10 3.84 3.79 368 363 3.79| 670 374 3.79 3.84  3.90
65 80 125 164 165 | 179 108 89 80 72
9.00  10.33  9.67 10.33 22.67 | 50.00 9.00 10.00 10.33 10.67
C =100 4.01 3.89 385 373 3.73| 6.87 395 439 3.96  3.96
59 59 84 133 162 | 179 79 69 62 59
11.00  10.67 10.33 10.33 10.00 | 50.00  9.00 10.00 11.33 11.67
C = 1000 4.73 417 406 407 417 | 6.97 4.06 418 417  4.17
49 56 64 91 119 | 179 70 58 55 54
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Table 8.5: Sine Function: SVM Result of All Patterns (500)

Test Error (%)
RBF Poly.

Exe. Time (sec)
Num. of SVs |0 =025 6=05 o=1 06=2 o0c=3| p=1 p=2 p=3 p=4 p=5
16.33 18.33 20.00 20.67 20.33 | 20.67 21.00 20.67 16.67 16.00
C =01 280.34 282.10 280.12 278.19 277.32 [281.33 281.33 284.30 288.42 290.23
406 354 367 420 473 345 327 316 306 302
13.67 16.33 19.33 20.00 20.67 | 20.33 19.67 17.33 14.00 13.67
C=1.0 267.71 266.12 260.95 261.72 258.15 [259.14 264.36 268.31 272.82 273.04
281 276 303 325 343 307 297 283 277 271
14.67 13.33 16.67 19.00 20.67 | 20.33 20.00 15.67 14.00 14.33
C =10 254.58 252.22 244.75 240.08 241.67 |243.81 244.26 261.78 253.92 254.85
256 252 278 299 306 303 293 270 257 254
16.67 14.33 13.33 18.33 19.67 | 20.33 20.00 13.67 13.33 14.33
C =100 257.65 252.88 250.85 247.88 253.70 |248.38 254.03 263.37 267.76 255.68
236 243 260 288 294 301 293 266 250 252
18.00 13.33 14.00 15.00 19.00 | 20.33 20.00 15.00 14.33 14.67
C = 1000 269.03 264.90 264.64 265.29 260.13 |258.04 265.84 275.39 279.62 268.92
234 245 249 273 288 301 293 266 250 251

Table 8.6: Sine Function: SVM Result of Selected Patterns (264)
Test Error (%)
RBF Poly.
Exe. Time (sec)
Num. of SVs c=025 0=05 o= c=2 o= p= p= p=3 p= p=

16.67 18.33  20.00 33.33 55.33 | 22.67 19.33 19.67 16.33 15.67
C=0.1 11.76 8.19 10.44 9.34 8.85 | 22.36 9.34 8.41 8.19  8.68
255 246 247 261 264 230 218 209 201 197
13.33 15.67 19.33 20.33 22.33 | 22.00 19.33 16.67 14.00 13.67
C=1.0 9.12 7.64 7.42 8.13 7.58 | 18.73 7.42 7.81 8.52 7.42
172 187 204 216 228 202 196 187 175 170
14.67 12.67 14.67 19.67 20.67 | 21.67 20.00 15.33 13.67 14.33
C =10 6.71 8.51 6.48 6.65 6.81 | 17.47 7.36 7.91 8.25 7.64
132 143 182 197 202 197 191 163 154 144
15.33 13.33 13.67 18.67 19.33 | 21.67 18.67 13.67 13.33 14.33
C =100 7.53 6.93 7.58 8.36 8.19 | 17.69 8.19 6.82 8.79 T.74
120 128 158 190 192 196 190 152 136 131
18.00 13.33 14.33 14.67 17.67 | 20.33 18.67 12.33 14.33 14.00
C = 1000 8.41 7.97 7.42 7.09 7.31 18.9 9.23 7.58 7.74 T7.75
112 124 135 174 189 196 190 151 130 124
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Kernel Rbf Polynomial ernel Rbf Polynomial
(Width Parameter) (Degree Parameter) (Width Parameter) (Degree Parameter)
C 0.25 0.5 3 1 3 5 C 0.25 0.5 2 3 1 5
11.33[11.67] 9.67]25.33|34.33|51.67|10.67 | 11.67|10.00]10.33 16.33]18.3320.00] 20.67 | 20.33 | 20.67 | 21.00]20.67| 16.67]16.00
0.1 141.33|20.33| 50.00)50.00|50.00 |50.00(50.00 |32.67 |11.67 |10.67 0.1 |16.67|18.33|20.00(33.3355.33 | 22.67 |10.33|19.67| 16.33|15.67
10.00(12.00| 11.00|10.67|34.33|34.00|10.00|10.67 |11.38|11.33 13.67|16.33 | 19.3320.00| 20.67 | 20.33|10.67 | 17.33| 14.00|13.67
1.0 |10.3312.00| 31.33|50.00|50.00|50.00|15.67 |12.33|11.33|11.00 1 13.33(15.67 10.33|20.33 |22.33 |22.00 (19.33 |16.67 | 14.00|13.67
10.00(11.33| 10.00]12.00|10.00|31.67| 9.67 |10.33|11.67 12.00 14.67|13.33 | 16.67 | 19.00|20.67 | 20.33|20.0015.67| 14.00|14.33
10 |10.00|10.33| 10.0035.33|50.00|50.00|10.00| 9.67|10.33|10.00 10 |14.67|12.67[14.67 |19.67 |20.67|21.67 [20.00|15.33| 13.67[14.33
10.00[11.00| _ 9.67|10.6710.33 |31.67 |10.00|10.00|11.67 |12.33 16.67|14.33|13.33|18.33 | 19.67 | 20.33 | 20.00 | 13.67 | _ 13.33|14.33
100 9.00(10.33| ™ 9.67 |10.38|22.6750.00| 9.00(10.00|10.38|10.67 100 |15.33|13.33|13.67 |18.67|10.33|21.67|18.67|18.67 | 13.33|14.33
10.67|10.33| 11.33|10.33|10.00|31.67|10.33| 9.67 |12.33|12.67 18.00(13.3314.00 | 15.00| 19.0020.33|20.00 | 15.00| 14.33 |14.67
1000 |41.00(10.67| 10.33|10.33]10.00|50.00| 9.00|10.00|11.33|11.67 1000 J18.00|13.33|14.33|14.67 |17.67 | 20.33|18.67|12.33| 14.33]14.00

a. Continuous XOR problem

b. Sine Function problem

Figure 8.11: SVM test error comparison: In each cell, the upper number indicates
test error rate for ALL and the lower for SELECTED.

Table 8.7: Best Result Comparison

Continuous XOR
ALL SELECTED

Sine Function
ALL

SELECTED

Execution Time (sec)
Margin

Num. of Training Patterns
Num. of Support Vectors
Training Error (%)

Test Error (%)

454.83 3.85
0.0612 0.0442
600 179
167 84
10.50 13.89
9.67 9.67

267.76
0.1904
500
250
19.00
13.33

8.79
0.0874
264
136
19.32
13.33
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Table 8.8: Execution Time Comparison

Num. of Num. of Pattern Selection SVM Avg. Model Selection
patterns SVs (avg.) CPU time CPU time CPU time
Continuous ALL 600 292.20 - 472.20 23610.16
XOR SELECTED| 179  120.54 0.88 (Naive) 4.45 222.48
0.21 (Fast)
Sine ALL 500  293.60 - 263.84 13191.90
Function SELECTED| 264  181.76 0.66 (Naive) 9.13 456.36
0.17 (Fast)

the execution time from Fig. 8.11. The average SVM training time of ALL was
472.20 (sec) for Continuous XOR problem and 263.84 (sec) for Sine Function
problem. That of SELECTED was 4.45 (sec) and 9.13 (sec), respectively. Pat-
tern selection itself took 0.88 (sec) and 0.66 (sec) by naive NPPS and 0.21 (sec)
and 0.17 (sec) by fast NPPS, respectively. Therefore, by conducting pattern
selection procedure just once, we were able to reduce SVM training time by one
or two orders of magnitude, thus reduce the total time for model selection.

8.4 Comparison to A Similar Previous Approach

Almeida et al. (2000) proposed to select training patterns in order to reduce
SVM training time in their previous study (Almeida et al., 2000). Since their
approach and goal are similar to ours, we could directly compare the results of
the two methods based on the synthetic problem Almeida adopted.

8.4.1 4x4 Checkerboard Problem

fast NPPS was tested on a synthetic 4x4 Checkerboard problem. The train-
ing set consists of 1,000 patterns uniformly distributed in a 4x4 Checkerboard
square, ¥ ranging from -1 to 1. Each square is occupied by patterns from a
same class. See Fig. 8.12.a for overall distribution of the two class patterns. A
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Figure 8.12: 4x4 Checkerboard problem: Selected patterns, shown as outlined
circles or squares, are scattered against the original ones

total of 10,000 test patterns were also obtained from the same distribution. We
trained a SVM with OSU SVM Classifier Matlab Toolbox, which is a hybrid
algorithm of SMO and SVM! 9"t since 1,000 training patterns were too large to
fit into the memory for the standard Matlab QP solver such as Gunn’s (Kernel-
Machines.org). SVM parameter values and the number of repetitions were set in
the same way as in (Almeida et al., 2000): RBF kernel with o = 0.25, C' = 20,
and 100 times of repetition. The value of k£ was set as 4 by following the
procedure in section 6.4. Fig. 8.12.b shows the 275 selected patterns by fast
NPPS (27.5% of training set).

Fig. 8.13 shows a typical result from 100 repetitions, the decision boundaries,
margins, and support vectors of the SVM “with all patterns (ALL)” and “with
the selected patterns (SELECTED)”. The decision boundaries in both figures
look quite similar, thus, generalization performance is similar.

Table 8.9 compares our approach to Almeida et al. (2000) on an average basis.
First, the average number of the selected patterns in Almeida et al. (2000) was
497.15, but that of the proposed algorithm was 275.52. They selected about
a half of the training patterns while we selected about a quarter. However,
the number of support vectors selected by our approach was about the same as
theirs. It means that the training set selected by the proposed method is more
compact. Direct comparison of the execution time does not make sense because
two experiments were performed in different computing environments. Thus,
we do compare both algorithms in terms of the SVM training time reduction
ratio. While Almeida et al. (2000)’s algorithm reduced 60% of training time,
ours reduced 98%, almost two orders of magnitude: Almeida et al. (2000)’s
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b. SVM with selected patterns

Figure 8.13: Patterns and SVM decision boundaries of 4x4 Checkerboard prob-
lem (C = 20, o = 0.25): decision boundary is depicted as a solid line and the
margins are defined by the dotted lines in both sides of it. Support vectors are
outlined.

Table 8.9: Result Comparison

Almeida et al. (2000) | Proposed Algorithm

ALL SELECTED ALL SELECTED

Num. of Training Patterns 1000 497.15 1000 275.52
Num. of Support Vectors 172 159.69 172 148.20
Training Time Reduction Ratio| 1 0.40 (=13.00) 1 0.02 (=99,
Pattern Selection Time (sec) - 0.89 - 0.32
Test Error (%) 4.04 5.08 4.03 4.66

algorithm reduced 19 seconds out of 32 while ours reduced 3.72 seconds out of
3.81 seconds. The pattern selection process itself took less than a second, so
it was marginal compared to the training time reduction. There was a slight
increase in the test error, from 4% to 4.6%. However, it was less than 5% error
achieved by (Almeida et al., 2000).

8.5 Real World Problems

The proposed approach was applied to three real world datasets: Pima In-
dian Diabetes and Wisconsin Breast Cancer datasets from (UCI Repostory) and
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Figure 8.14: Number of patterns: 0, by, and SVs

MNIST dataset of handwritten digits from (MNIST). For all three datasets,
OSU SVM Classifier Matlab Toolbox was used (Kernel-Machines.org).

8.5.1 UCI Repository Datasets

The experiments on Pima Indian Diabetes and Wisconsin Breast Cancer are
presented first. To measure the performance, 5-fold cross validation (CV) was
conducted on each dataset. According to Eq. (6.13), v values for the two datasets
were estimated as 393 and 108 from P(error) = 32.0% and P(error) = 9.9%,
respectively. The value of k was determined by the procedure introduced in
section 6.4 : £k = 4 in Pima Indian Diabetes and k£ = 6 in Wisconsin Breast
Cancer (see Fig. 8.14). We chose a quadratic polynomial SVM kernel and the
error tolerance parameter C' = 100 for Pima Indian Diabetes, and a cubic poly-
nomial kernel and C' = 5 for Wisconsin Breast Cancer. Fig. 8.15 depicts the
average SVM CV error rates. In Pima Indian Diabetes, the SVM performance
was stabilized at about 30.0% for k larger than 4, and in Wisconsin Breast Can-
cer, 6.7% for k larger than 6. The results are similar to those from the synthetic
data experiments.

Table 8.10 compares the average execution times and the performances of SVM
with all patterns vs. SVM with the selected patterns. In both datasets, the
average SVM training time was reduced from 203.91 (sec) to 27.86 (sec), and
from 2.14 (sec) to 0.03 (sec), respectively. But, the generalization accuracies
were maintained almost same.
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Figure 8.15: SVM CV error rates

Table 8.10: SVM Training Results: ALL vs. SELECTED

Num. of Num. of | Pattern Sel. SVM trn. | SVM CV
Trn. patterns SVs time (sec) time (sec) | error (%)
Pima Indian Diabetes
ALL 615 330 - 203.91 29.9
SELECTED (k = 4) 311 216 0.24 27.86 30.3
Wisconsin Breast Cancer

ALL 546 87 - 2.14 6.8
SELECTED (k = 6) 96 41 0.10 0.03 6.7
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Table 8.11: MNIST Result Comparison

Paired Classes
0-8 1-8 2-8 3-8 4-8 5-8 6-8 7-8  9-8

ALL
Num. Of Patterns 11774 12593 11809 11982 11693 11272 11769 12116 11800
Num. Of SVs 538 455 988 1253 576 1039 594 578 823
SVM Training Time (sec) [201.74 190.76 368.82 477.25 212.18 379.59 222.84 222.40 308.73
Test Error (%) 0.51 0.09 0.34 0.50 0.10 0.16 0.31 0.10 0.41
SELECTED
Num. Of Patterns 1006 812 2589 4089 1138 3959 1135 999 1997
Num. Of SVs 364 253 828 1024 383 882 421 398 631

SVM Training Time (sec) | 11.11 5.92 33.03 49.84 12.11 49.74 14.69 13.55 26.61
Pattern Sel. Time (sec) 46.11 43.33 78.81 97.89 48.13 93.42 44.27 40.14 59.62
Test Error (%) 0.41 0.95 0.34 0.45 0.15 0.21 0.31 0.18 0.43

8.5.2 MNIST Dataset

MNIST dataset consists of 60,000 patterns for training and 10,000 patterns for
testing. All binary images are size-normalized and coded by gray-valued 28x28
pixels in the range between -1 and 1, therefore, input dimension is 784. Nine
binary classifiers of MNIST were trained: class 8 is paired with each of the
rest. A Fifth-order polynomial kernel (p = 5), C value of 10, and KKT(Karush-
Kuhn-Tucker) tolerance of 0.02 were used as in (Platt, 1999), and the value
of k was set to 50, more or less. The results for the training run both with
all patterns (ALL) and with the selected patterns (SELECTED) are shown in
Table 8.11. First, we compare the results with regard to the number of training
patterns and also the number of support vectors. The proposed algorithm chose
an average 16.75% of patterns from the original training sets. When all patterns
were used, only 6.44% of the training patterns were used as support vectors.
With selected patterns, 32.09% of its training patterns were support vectors.
In terms of utilization, the pattern selection did well (see Fig. 8.16.a). Second,
SVM training time was significantly reduced from 287.15 (sec) to 24.07 (sec) on
average after the pattern selection procedure. Including the pattern selection
time, the total time was, on average, 85.37 (sec). See Fig. 8.16.b. Note that
SVM training is usually performed several times to find the optimal parameters.
However, the pattern selection is performed only once. Now we finally compare
the SVM test error rates between ALL and SELECTED. First, the average test
error rate over nine classifiers was 0.28% for the former and 0.38% for the latter.
The increase in average error of SELECTED was due to the high error rate of
one classifier, i. e. 1-8 classifier. This exception may result from the unique
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Figure 8.16: MNIST Result Comparison

characteristic of digit ‘1’ images. Individual patterns belonging to ‘1’ class are
sparse vectors: only a few fields of a vector have significant gray-scaled value,
and the rest of the fields have value of ‘0’. Therefore, a pattern in ‘1’ class finds
the most part of its neighbors in the same class not in the opposite class. It
causes the set B small, thus very few patterns are chosen (especially from ‘1’
class) during the pattern selection procedure. This conjecture is accompanied
by the number of selected patterns of ‘1’ digit class. Only 95 patterns were
selected from 6742 patterns in ‘1’ digit class. In the meantime, the average test
error rate for the rest was 0.30% for ALL and 0.31% for SELECTED.



CHAPTER 9

Applications with a Large
Scale Data set — Response
Modeling For Customer
Relationship Management

This chapter exemplifies a practical usage of the proposed method by applying
to a real problem in marketing domain - response modeling in direct marketing.
This chapter is rather a domain-oriented application than a simple algorithm-
oriented application. We first diagnose the domain specific difficulties which can
arise in practice when applying SVM to response modeling in direct marketing,
such as large training data, class imbalance and binary SVM output. To alleviate
or solve the addressed difficulties, we propose use of the proposed method, use
of different costs for different classes, and use of distance to decision boundary.
This chapter also provides various evaluation measures for response models in
terms of accuracies, lift chart analysis and computational efficiency.
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9.1 Introduction

Direct marketing is concerned with identifying likely buyers of certain prod-
ucts or services and promoting them to the potential buyers through various
channels. A response model predicts a probability that a customer is going to
respond to a promotion or offer. Using the model, one can identify a subset
of customers who are more likely to respond than others. A more accurate
response model will have more respondents and fewer non-respondents in the
subset. By doing so, one can significantly reduce the overall marketing cost
without sacrificing opportunities.

Various statistical and machine learning methods have been proposed for re-
sponse modeling. These researches will be reviewed in section 9.2. Most recent is
Support Vector Machine (SVM). However, there are some difficulties one would
face when SVM is attempted to be applied to response modeling. First, SVM
training can become computationally intractable. Generally, retailers keep huge
amounts of customer data. Moreover, a new customer’s record will be added
on top of it on and on. Second, response modeling is likely to have a severe
class imbalance problem since the customers’ response rates are typically very
low. Most of customers belong to the non-respondents’ group (class 1), while
only a few customers belong to the respondents’ group (class 2). Under such a
circumstance, most classifiers do not behave well, and neither does SVM. Third,
one has to find a way to estimate scores or likelihoods from SVM. Given a lim-
ited amount of marketing expenses, a marketer wants to maximize the return
or total revenue. Thus, one would like to know who is more likely to purchase
than others. Response models compute each customer’s likelihood or propen-
sity to respond to a particular offer of a product or a service. These likelihood
values or scores are then used to sort the customers in a descending order. Now,
the marketer simply applies a cut-off value based on the marketing expenses
and only those customers whose scores are larger than the value are identified.
However, an SVM classifier returns a binary output, not a continuous output
which can be interpreted as a score.

In this chapter, we address the obstacles mentioned above. For the intractability
problem of SVM training, we use the proposed pattern selection algorithm that
reduces the training set without accuracy loss. To alleviate the class imbalance
problem, we propose to assign for different classes different misclassification
costs which is proportional to the size of the counter class dataset. Finally, we
propose to use the distance from a pattern to the decision hyperplane in the
feature space for scores. In addition, we provide various measures for evaluating
the response models in both accuracy and profit.
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The remaining part of this chapter is organized as follows. Section 9.2 presents
related works on various statistical or machine learning methods applied to di-
rect marketing domain. Section 9.3 addresses the obstacles in applying SVM
to response modeling. The section proposes ways to reduce the training set, to
handle the class imbalance problem, and to obtain the customer scores from an
SVM classifier. Section 9.4 provides the experimental results on a direct market-
ing dataset. The section includes the data set description, experimental design,
and performance measurements. The last section summarizes the chapter.

9.2 Related Work

9.2.1 Response Modeling

Traditionally, statistical methods, mostly regression techniques, have been ap-
plied to response modeling. Most textbooks cover logistic regression as the de
facto method due to its simplicity, explainability and availability (Hosmer and
Lemeshow, 1989; Sen and Srivastava, 1990). Malthouse (1999) compared ridge
regression with stepwise regression on the Direct Marketing Educational Foun-
dation data set 2 (DMEF2) (The Direct Marketing Association). In his study,
both methods were used for determining the moderate number of variables in
response modeling. Empirically, he showed that ridge regression is a more stable
and less risky method than dropping variables. In his recent report, a similar
approach, which additively considered the dollars spent in response to an offer,
was proposed (Malthouse, 2002). Colombo and Jiang (1999) proposed a simple
Recency-Frequency-Monetary (RFM) stochastic model for ranking (or scoring)
customers. The RFM stochastic model derived from the response distribution
of the past was used to estimate the likelihood of future responses. A customer
mailing list obtained from a tele-markeing company was used for comparing the
performance of the stochastic model with that of regression and cross-tabulation
model. They reported that the stochastic model provided a more insightful al-
ternative to ranking customers.

Recently, machine learning methods have been proposed. They include deci-
sion trees and neural networks, etc. Haughton and Oulabi (1997) compared
the response lifts of two mostly common decision tree algorithms: Classification
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and Regression Tree (CART) and Chi-Square Automatic Interaction Detector
(CHAID). Although the two models are different in their tree-generating mech-
anism, there was no significant difference in the response-lift perspective. Ling
and Li (1998) compared a Naive Bayes response model and a C4.5 response
model. Applying the ada-boost algorithm (Freund and Schapire, 1996) to each
base model for better performance, they conducted experiments on three di-
rect marketing problems such as loan product promotion, life insurance product
campaign, and bonus program. All experiments were designed to discuss the dif-
ficulties which can arise during the response modeling process, such as class im-
balance and justifiability of evaluating measures. Coenen et al. (2000) proposed
to combine C5, a decision tree algorithm, and case-based reasoning (CBR). In
this approach, the C5 based response modeling was conducted in the first step.
Then, the respondents classified by the initial model were ranked by a CBR sim-
ilarity measure. They improved the classification quality by accommodating a
better ranking rather than the accuracy of the base response model itself. Chiu
(2002) integrated genetic algorithm (GA) into a CBR based response model.
For a better case identification accuracy, the fittest weighting values on the
cases were searched by GA. On the application of an insurance product pur-
chase dataset, the base response model, CBR, achieved a better classification
accuracy. Deichmann et al. (2002) investigated the use of Multiple Adaptive
Regression Splines (MARS) as a response model. MARS is an advanced deci-
sion tree technique enabling piecewise linear regression. The MARS response
model outperformed the logistic regression model on the DMEF2 (The Direct
Marketing Association).

There have also been many reports on neural networks. Moutinho et al. (1994)
predicted bank customers’ responses using neural networks, and Bounds and
Ross (1997) showed that neural network based response models improved the
response rate from 1 or 2 % up to 95%. Zahavi and Levin (1997a) addressed
unique merits and demerits of neural networks for response modeling. Viaene
(2001a) proposed to select relevant variables for neural network based response
models. Ha et al. (2004) proposed a response model using bagging neural net-
works. The experiments over a publicly available DMEF4 dataset (The Direct
Marketing Association) showed that bagging neural networks give more im-
proved and stabilized prediction accuracies than single neural networks and
logistic regression. Performance comparison of the methods has been one of the
controversial issues in direct marketing domain. Zahavi and Levin (1997) and
Suh et al. (1999) found that neural network did not outperform other statistical
methods. They suggested to combine the neural network response model and
the statistical method. On the other hand, Bentz and Merunkay (2000) reported
that neural networks outperformed multinomial logistic regression. Potharst et
al. (2001) applied neural networks to direct mailing campaigns of a large Dutch
charity organization. According to their results, the performance of neural net-
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works surpassed that of CHAID or logistic regression.

Although SVM is applied to a wide variety of application domains, there have
been only a couple of SVM application reports in response modeling. Cheung et
al. (2003) used SVM for content-based recommender systems. Web retailers im-
plement a content-based system to provide recommendations to a customer. The
system automatically matches his/her interests with product-contents through
web-pages, newsgroup messages, and new items. It is definitely a form of di-
rect marketing that has emerged by virtue of recent advances in the world wide
web, e-business, and on-line companies. They compared Naive Bayes, C4.5 and
1-nearest neighbor rule with SVM. The SVM yielded the best results among
them. More specific SVM application to response modeling was attempted by
Viaene (2001b). They proposed a Least Square SVM (LS-SVM) based wrapper
approach. Wrapper indicates an input variable selection procedure working to-
gether with a learning algorithm, and it is frequently compared with alternative
procedure, filter, that performs variable selection independently from a learn-
ing algorithm. In their study, the input variable pool was composed of RFM
and non-RFM variables from the customer dataset provided by a major Belgian
mail-order company. Then, the wrapper approach was performed in a sequen-
tial backward fashion, guided by a best-first variable selection strategy. Their
approach, a wrapper around the LS-SVM response model, could gain significant
reduction of model complexity without degrading predictive performance.

9.2.2 Large Training Set, Class Imbalance, and Binary
Output

Now, let us focus on the researches related to the difficulties we addressed in
this chapter. For the literature review on the issue of large training set, refer to
chapter 2.

9.2.2.1 Class Imbalance

Regarding class imbalance, many researchers have recognized this problem and
suggested several methods: enlarging the small class dataset by random sam-
pling, reducing the large class dataset by random sampling, and ignoring the
small class dataset and using only the large class dataset to build a one-class rec-
ognizer. Japkowicz (2000) compared the three commonly used methods above
on the degree of concept complexity using a standard neural network classifier.
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All the methods generally improved the performance of the learning algorithm.
In particular, the first two methods were very effective especially as the concept
complexity increases while the last one was relatively less accurate. Ling and
Li (1998) addressed the specificity of the class imbalance problem which resides
in marketing datasets. They did not attempt to balance the imbalanced class
ratio for better predictive accuracy. Instead, to circumvent the class imbalance
problem, a marketing specific evaluation measure, lift index, was suggested. Lift
index provides the customer’s rank (score) by reflecting the confidence of classi-
fication result. They argued that even if all of the patterns are predicted as one
class, as long as the learning algorithm produces suitable ranking of the pat-
terns, the imbalanced class distribution in the training set would no longer be
a problem. However, in their experiments all the best lift index were obtained
when the sizes of the classes were equal. Thus, they recommended to reduce
the large class dataset so that its size becomes equal to that of the small class.
Alternatively, different misclassification costs can be incorporated into classes,
which avoids direct artificial manipulation on the training set (Lee et al., 2001).

9.2.2.2 Getting Scores from Binary Output

Getting scores from a logistic regression model or a neural network model with
sigmoidal output function is well known. The output gives a value of probabil-
ity belonging to the class, that is ranged from 0 to 1. Thus the output value is
used as a score for sorting the customers. Ling and Li (1998) made use of the
ada-boost algorithm (Freund and Schapire, 1996), an ensemble approach, to get
the customers’ scores. Basically, ada-boost maintains a sampling probability
distribution on the training set, and modifies the probability distribution after
each classifier is built. The probability of patterns with an incorrect predic-
tion by the previous classifier is increased. So these patterns will be sampled
more likely in the next round of boosting, to be learnt correctly. A pattern’s
probability to be incorrectly predicted allowed a corresponding rank. Some-
times, scores could be directly estimated by regression model having continuous
target value, i.e., the dollars spent or the amount of orders. To do that, how-
ever, one needs to diagnose the problems the target variable has and conduct
suitable remedies to cure them. Malthouse (2001) built a regression model
to estimate the dollars spent on DMEF4 (The Direct Marketing Association).
There was a large number of extreme values and the distribution was highly
skewed. The extreme values could have a large influence on estimate values un-
der least squares. And the variance of target variable most likely increased with
its mean (heteroscedasticity). Thus, he performed log transformation to alle-
viate skewness and heterocedasticity, and used winsorization to exclude some
extreme values of target. The predicted value of the dollars spent was used as a
score in lift chart analysis. The lift result by means of regression based scoring
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will be briefly compared with that by means of classification based scoring in
section 9.4. Generally speaking, regression problem requires more information
from input variables than classification problem does. In other words, binary
classification is the simplest subproblem of regression. Producing good scores
from marketing regression model is difficult at the present time. In addition,
since SVM theory stemmed from classification context (Scholkopf, 1999), it is
natural to get scores from an SVM classifier.

9.3 Methods to Cope with Practical Difficulties

9.3.1 Large Training Set

The most straightforward method to reduce a large training set is random sam-
pling. In SVM, however, the patterns near the decision boundary are critical to
learning. The training set reduced by random sampling may omit those, thus
would lead to significantly poorer prediction results. Instead, it will be desirable
to apply the method proposed in the thesis to handle this difficulty. Contrary
to a usually employed “random sampling,” NPPS can be viewed as “informa-
tive or intelligent sampling.” Fig. 9.1 conceptually shows the difference between
NPPS and random sampling in selecting a subset of the training data. NPPS
selects the patterns in the region around the decision boundary, while random
sampling selects those from the whole input space.

9.3.2 Class Imbalance

Usually there are many more non-respondents than respondents in training
datasets. Thus, sub-sampling of non-respondent class data is the most widely
used method to balance the datasets. However, random sampling allows “im-
portant” patterns near the decision boundary to be missed. Those patterns are
likely to become support vectors. Loss of those patterns could result in a poor
generalization performance of SVM. Thus, instead, we propose to employ dif-
ferent misclassification costs to different class errors in the objective function,
which is naturally allowed in SVM. This approach is not only safer, but also
more principled.

Let my and my denote the size of class 1 and class 2 data sets, respectively, with
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Figure 9.1: NPPS and random sampling select different subsets: outlined circles
and squares are the patterns belonging to class 1 (non-respondents’ group) and
class 2 (respondents’ group), respectively. Black solid circles and squares are
the selected patterns.

mp > mo and M = mp + mo. One way to alleviate data imbalance problem
is to assign to a large class a smaller cost while assign to a small class a larger
cost, which assures that a small class is not “neglected.” In response modeling,
there are many more non-respondents than respondents, thus the size of non-
respondents is my while that of respondents is mo. One way to accomplish it is
to define and assign C; and C5 to each class as below

O (w, &) = ||| + C, > i+ Co > &, (9.1)

i€Enonrespondents i€respondents

where C7 and Cy are defined respectively as

Gy

SESE

(9.2)
Oy =

In order to emphasize small respondent data set, a larger cost C5 is assigned to
its error term. Constant C' is the original cost term used in Eq.(3.1).
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9.3.3 Getting Scores from an SVM Classifier

The objective of response modeling is to compute the likelihood or propensity
of each customer to respond to a particular offer so that the mailing response
or profit is maximized. Lift chart is commonly used for this purpose, which
sorts the customers by the descending order of their estimated value (score),
and then the customers in the first several deciles are finally decided to be
mailed. Although an SVM classifier returns a binary output (-1 or 1) as shown
in Eq. (3.5), one can still estimate a score based on the distance between a
pattern and the decision boundary. In other words, we assume that a pattern
located further from the decision boundary has a higher probability of belonging
to that class. The decision boundary hyperplane f(Z) in a feature space ® is
represented as

F@ =) yieu®(@) - (&) +b=0 9.3)

1€SVs

from Eq. (3.5). It should be noted that the decision boundary is a hyperplane
in the feature space ® even though it is a nonlinear hyper-surface in the input
space. In the feature space, hence, the distance from a pattern ®(Z) to the
decision boundary hyperplane f(#) can be calculated by

dist(®(#), () =

8

The exact value of the distance is not possible to obtain since the actual mapping
function ®(-) is not known. The feature space ® is an infinite dimensional space,
and multiple mapping functions ®(-)s can exist. In actual SVM training, a
kernel function K (Z,Z') replaces ®(Z) - ®(Z'). Fortunately, however, one does
not need to know the exact value of the distance. Instead, only a relative score
or rank is all that is required. Since the denominator in Eq. (9.4) is common
for all patterns, the signed function value in the numerator, f(Z), can be used
in computing ranks. The larger the value of f(Z), the lower the rank of that
particular customer’s likelihood becomes.



Applications with a Large Scale Data set — Response Modeling For
80 Customer Relationship Management

9.4 Experiments

This section provides the empirical results of SVM based response modeling
with the proposed approach. In particular, the performance evaluation measures
pertinent to response modeling are also proposed and measured.

9.4.1 Dataset

In machine learning literature, so-called standard and public datasets are used.
But, in response modeling, or in direct marketing for that matter, such datasets
do not seem to exist. Many papers use a unique dataset which is not available
for other researchers. The only exception seems to be datasets from the Direct
Marketing Educational Foundation (DMEF) (The Direct Marketing Associa-
tion). The DMEF makes marketing datasets available to researchers. Dataset
DMEF4, was used in various researches (Ha et al., 2004; Malthouse, 2001, 2002).
It is concerned with an up-scale gift business that mails general and specialized
catalogs to its customer base several times each year. The problem is to estimate
how much each customer will spend during the test period, 09/1992-12/1992,
based on the training period, 12/1971-06/1992. There are 101,532 patterns in
the dataset, each of which represents the purchase history information of a cus-
tomer. FEach customer is described by 91 input variables. A subset of 17 input
variables, some original and some derived, were employed just as in (Malthouse,
2001) (see table 9.1). The dataset has two target variables, TARGDOL (target
mailing dollars) and TARGORD (target mailing orders). The former indicates
the purchase dollar amount during the test period, and the latter indicates the
number of orders during the test period. The TARGDOL or the TARGORD
could be directly estimated by building a regression model. Malthouse (2001)
built a regression model to estimate the value of TARGDOL. But due to the
problems of regression (section 9.2), we formulated the problem into a classifi-
cation one. A new target variable, RESPONSE, was defined as follows: 1 if
TARGDOL (TARGORD) > 0, 0 otherwise. Ha et al. (2004) used the same
derivation to fit a neural network classifier. Thus, all the customers were cat-
egorized into either a non-respondent (class 1) or a respondent (class 2). The
response rate is 9.4%, which means the class distribution of the dataset is highly
imbalanced.
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Table 9.1: Input Variables

Variable Formula

Description

Original Variables

purseas
falord
ordtyr
puryear
sprord

Derived Variables

recency
tran38 1/recency
tran51 0 < recency < 90
tran52 90 < recency < 180
tranb3 180 < recency < 270
tran54 270 < recency < 366
tranbb 366 < recency < 730

14
comb2 prodgrp ¢

i=1
tran25 1/ (1+lorditm)
trand2 log(1 + ordtyr x falord)
tran44 Vordhist x sprord

tran46 comb2

number of seasons with a purchase
life-to-date (LTD) fall orders
number of orders this year
number of years with a purchase
LTD spring orders

order days since 10/1992

five dummy variables (tran51-55)
having the value 1, if the condition
is satisfied, otherwise the value 0

number of product groups purchased
from this year

inverse of latest-season items
interaction between the number of
orders

interaction between LTD orders and
LTD spring orders
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Table 9.2: SVM models: the number of patterns selected from NPPS slightly
varies with the given set of each fold, thus it is represented as an average over
the five reduced training sets.

Model Size of Training Data Training Data

R05-SVM 4060 5% random samples
R10-SVM 8121 10% random samples
R20-SVM 16244 20% random samples
R40-SVM 32490 40% random samples
R60-SVM 48734 60% random samples
R&80-SVM 64980 80% random samples
R100-SVM 81226 100% random samples

S-SVM avg. 8871 the patterns selected by NPPS

9.4.2 SVM Models

To verify the effectiveness of NPPS, we considered seven SVMs trained with
randomly selected patterns. They are denoted as R*-SVM where ‘*’ indicates
the ratio of random samples drawn without replacement. S-SVM denotes the
SVM trained with the patterns selected by NPPS (see table 9.2). Each model
was trained and evaluated using five-fold cross-validation. The number of neigh-
bors (k) of NPPS, was set to 4 according to guidelines suggested in Shin and Cho
(2003c). All the SVM models in table 9.2 use the same hyper-parameter values
to equalize their effects. The RBF kernel in Eq. (3.2) was used with parameter o
set to 0.5, and the misclassification tolerance parameter C in Eq. (3.1) set to 10.
These parameter settings were determined through a trial-error approach over
the combination of C' and o, ({0.1,1, 10,100, 1000} x {0.25,0.5,1,2,3}), using
ten fold cross-validation performance. The class imbalance problem addressed
in section 9.3.2 appeared in all the eight datasets. The sets selected by random
sampling showed the common class ratio of my : mo = 90.6% : 9.4%. That is also
the same ratio as the original training set since we conducted a stratified random
sampling by the target variable. The training set reduced by NPPS, however,
showed a different class ratio, my : ma = 65.5% : 34.5% (= 5810 : 3061) on
average. Even though NPPS improved the ratio of the smaller class from 9.4%
up to 34.5%, the imbalance problem still remained. Thus, the different misclas-
sification costs, C7 and Cs were set on every dataset as they were defined in
Eq. (9.2). C; and C5 of R*-SVM were 0.94 (= 0.094x 10) and 9.06(= 0.906 x 10),
respectively. On the other hands, those of S-SVM were 3.45(= 0.345 x 10) and
6.55(= 0.655 x 10).
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Table 9.3: Confusion Matrix: FP, FN, TP and TN means false positive, false
negative, true positive, and true negative in due order where TP and TN are
the correct classification.

Classified
class 1 class 2
(non-respondent) (respondent)
Actual class 1 (non-respondent) ma1 (TN) mi2 (FP) mi
chua class 2 (respondent) ma1 (FN) maz (TP) ma

9.4.3 Performance Measurements

The performances of the eight SVM response models were compared in terms
of three criteria: accuracies, lift chart and computational efficiency.

9.4.3.1 Accuracies

The accuracy of a classifier can be described by a confusion matrix (see ta-
ble 9.3). Let m;; denote the number of patterns which were classified as class j
but whose actual class label is class 7. A most widely used accuracy measure-
ment is an Average Correct-classification Rate (ACR) which is defined as

Average Correct-classification Rate (ACR) = T A‘ZTP = Dauitmas

But, the average correct-classification rate can be misleading in an imbalanced
dataset where the heavily-represented class is given more weight. Receiver Op-
erating Characteristic (ROC) analysis is usually performed as well Provost and
Fawcett (1997), which measures the classifier’s accuracy over the whole range of
thresholds in terms of Specificity (Sp) and Sensitivity (Se) SAS Institute (1998).
They are defined as

. . _ TN _ mil — mu
Specificity (Sp) = 7N1Fp = mtmns =

e . _ TP _ m2o — Mma2
SenSItIVIty (Se) ~ FN+TP = ma1+ma2 ~ mg °

Since we fixed the classification threshold at 0 in the SVM decision function
Eq. (3.5), however, only one pair of Sp and Se per model was available. Thus,
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here the ROC plot has the eight pairs of (1-Sp, Se) scattered for their compar-
ison. Another accuracy measure, Balanced Correct-classification Rate (BCR),
was defined so as to incorporate Sp and Se into one term. BCR enforces balance
in the correct classification rate between two classes. It is defined as

Balanced Correct-classification Rate (BCR) = Sp-Se = (7). (222),

9.4.3.2 Lift Chart Analysis of Response Rate and Profit

Once the test patterns were sorted in a descending order according to f(Z), two
kinds of lift charts were investigated. One is for response rate, and the other
for profit. From the business point of view, the ultimate goal of direct mailing
is to maximize the profit rather than the response rate itself Malthouse (1999).
Thus we evaluated the eight competing SVM models from a profit aspect as
well. For profit lift chart analysis, another target variable of DMEF4 dataset,
TARGDOL (target mailing dollar), was associated with the rank of f(Z), which
indicates the purchase dollar amount during the test period. Two measurements
were used in evaluating lift charts. One is the average response rate or profit
in the top decile, “Top-Decile”. This measures how well two model identifies
a small number of highly likely respondents. The other is “Weighted-Decile”
defined as

{10Xd1+09><d2+08><d5+0].><d1()}
1.0+09+08+...+0.1 ’

Weighted-Decile =

where d;, (i = 1,...10) is a cumulative average response rate or profit till it"
decile in the lift table. This measures how well the model identifies a larger
number of likely respondents in a larger rollout. A similar evaluation by two
measurements has been adopted in data mining competitions Ling and Li (1998).

9.4.3.3 Computational Efficiency

The evaluation was done in several measures: the number of training patterns,
training time, and the number of support vectors, and recall time. The num-
ber of patterns directly influences the time complexity. The training time of
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SVM increases in proportion to the cube of the number of training patterns (in
case of standard QP solver). The recall time increases linearly to the number
of support vectors. Training time is of important concern to a direct marketer
who is in charge of SVM modeling with a huge amount of data, while recall
time is critical when the model is deployed to work in a real-time application
such as fraud detection. Although recall time is not a primary issue in response
modeling, we measured it for potential use to another application.

9.4.4 Results

We now give the experimental results of the eight SVM response models in the
order of accuracies, lift chart analysis, and computational efficiency.

Fig. 9.2 shows how the eight SVM response models performed in terms of
ACR, ROC, and BCR. First, Fig. 9.2.a indicates a mean ACR over five-fold
cross-validation of each SVM model. For the sake of convenience, R*-SVM
is briefly denoted as ‘R*’ in the figure. Sampling more patterns results in
higher ACR, but the increasing rate is not very high. From R05 to R100, only
about 3.52% (={0.8447 —0.8160}/0.8160 x 100%) of accuracy was gained from
1,900% (= {100 — 5}/5 x 100%) data increase. The S-SVM achieved ACR in
the range of those from R60-R80. However, we could not make good evaluation
of the model comparison using ACR because of class imbalance. In Fig. 9.2.b,
the eight pairs of (1-Sp, Se) were plotted in ROC chart. A point located upper
left corresponds to a better performance. The ACR is effectively broken down
into two classwise accuracies, Sp for non-respondents (class 1) and Se for re-
spondents (class 2). The Sps of the eight SVM models are similar, while the
Ses show a significant differences. It should be noted that it is Se, accuracy for
respondents’group, that is of greater importance to direct marketers, since their
primary goal is to identify the respondents, not the non-respondents. S-SVM
achieved a best Se, better than that of even R100-SVM. Fig. 9.2.c shows the
BCRs of the eight SVM response models. BCR clearly distinguished the accu-
racies of the eight SVM models. Sampling more data results in a larger BCR
also. The BCR of S-SVM is almost same as that of R100-SVM.

Fig. 9.3 illustrates the lift chart of the cumulative average response rate. The
base average response rate of DMEF4 dataset was 9.4%, which is represented as
a solid horizon at the bottom of the chart. Two observations can be made. First,
all the SVM response models did better than the base response rate. Second,
more training patterns lead to a better lift of the response rate. R100-SVM
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Figure 9.2: Accuracies: accuracy of R*-SVM is depicted as a solid circle while
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Figure 9.3: Lift chart of cumulative average response rate: R*-SVMs are de-

picted dotted lines but among them R10-SVM is represented as a dash-dot line.
S-SVM is represented as a solid-dot line.

showed the best performance while the R05-SVM showed the worst. Models
trained with more patterns showed a steeper lift in the first several deciles. The
lift curve of S-SVM was almost identical to that of R80-SVM. It is illuminating
to compare the curve shape of S-SVM with that of R10-SVM represented as a
dash-dot line. Although the two models had almost the same number of train-
ing patterns, they were significantly different in the lift performance. Fig. 9.4
shows the results of the lift measures described in section 9.4.3.2: Top-Decile and
Weighted-Decile. From the top 10 percentile of customers, R100-SVM obtained
51.45% response rate (see Fig. 9.4.a). The Top-Decile response rate of S-SVM
was 48.65%, which is almost equal to that of R80-SVM, 48.79%. Fig. 9.4.b
shows the results of Weighted-Decile response rates. R100-SVM still did best,
and S-SVM and R80-SVM came second. But the gap between the first and the
second was not so big as in the Top-Decile response rate.

Now, Fig. 9.5 and Fig. 9.6 describe the lift chart results in terms of the profit.
The average purchase dollar amount of DMEF4 was $48 when averaged over
the respondents’ group, but $4.5 when averaged over all customers. The hori-
zon line in the lift chart of Fig. 9.5 represents the $4.5 base average profit. All
the models did better than the base average profit and an SVM with more train-
ing patterns produced a higher profit in the first several deciles. But in terms of
the profit lift, S-SVM showed a performance comparable to that of R100-SVM.
It is also remarkable that the profit lifts of R100-SVM or S-SVM outperformed
those of Malthouse who got the scores by fitting the problem as a regression one
(Malthouse, 2001). For the cumulative average profit (dollars) of the second
decile, Malthouse’ regression model recorded $12-$15 while the SVM classifica-
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Figure 9.4: Top-Decile response rate and Weighted-Decile response rate: R*-
SVM is depicted as a bar while S-SVM is represented as a dotted reference
line.

tion model recorded $17-$18. Fig. 9.6 illustrates the Top-Decile profit and the
Weighted-Decile profit. The Top-Decile profit and the Weighted-Decile profit of
R100-SVM were $23.78 and $12.99, respectively, and those of R80-SVM were
$22.25 and $12.56. S-SVM were $23.53 in the Top-Decile profit and $12.77 in
the Weighted-Decile profit, which were slightly less than those of R100-SVM
but more than those of R80-SVM.

Finally, table 9.4 shows the results of computational efficiency measures in
columns: the number of training patterns, training time, the number of support
vectors, its proportion to training patterns, and recall time. We used OSU SVM
Classifier Matlab Toolbox, which is a hybrid algorithm of SMO and SVMlight,
and is known as one of the fastest solvers Hearst et al. (1997). Training time
increased proportionally to the number of training patterns with the peak of
4,820 (sec) for R100-SVM. On the other hand, S-SVM took only 68 (sec). The
total time of S-SVM was 129 (sec), when the NPPS running time, 61 (sec), was
included. Note that SVM training is usually performed several times to find a
set of optimal parameters, but the pattern selection is performed only once. In
the fourth column, the number of support vectors is represented. At most, half
of the random sampling training patterns were support vectors while 74% of
the NPPS selected training patterns were support vectors. The result confirms
that the NPPS’ selection of training patterns was more efficient. Recall time
was proportional to the number of support vectors as shown in the last column.
Overall, the computational efficiency of S-SVM was comparable to that of R10-
SVM or R20-SVM.
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Table 9.4: Computational Efficiency of SVM response models

Num. of Training Training Time Num. of SVs Recall Time
Patterns (sec) (proportion) (sec)

RO5 4,060 13.72 1,975 (48.65%) 17.22
R10 8,121 56.67 4,194 (51.64%) 31.39
R20 16,244 149.42 7,463 (45.94%) 56.17
R40 32,490 652.11 14,967 (46.07%) 112.08
R60 48,734 1,622.06 22,193  (45.54%) 166.11
R8O 64,980 2,906.97 28,968  (44.58%) 237.31
R100 81,226 4,820.06 35,529  (43.74%) 381.31

S 8,871 68.29 6,624 (74.67%) 45.13

9.5 Summary

This chapter exemplifies a practical usage of the proposed method by applying
to a real problem in marketing domain - response modeling in direct marketing.
We diagnose the domain specific difficulties which can arise in practice when
applying SVM to response modeling, then proposed how to alleviate and solve
those difficulties: informative sampling, different costs for different classes, and
use of distance to decision boundary. In the experiments, we showed that the
proposed solutions worked quite well. In particular, several models were trained
and evaluated in terms of accuracies, lift chart analysis and computational effi-
ciency. The SVM trained with the patterns selected by proposed NPPS (S-SVM)
were compared with the ones trained with random samples (R*-SVMs where ‘*’
indicates the sampling percentage). Fig. 9.7 summarizes the results in terms of
various measures. The horizontal bars in the figure shows the performance of
S-SVM relative to those of R*-SVMs in various measures. S-SVM achieved the
accuracies and uplifts comparable to those of R80-SVM and R100-SVM with a
computational cost comparable to those of R10-SVM and R20-SVM.
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CHAPTER 1 O

Conclusion and Discussion

In the thesis, we proposed to select the patterns near the decision boundary
based on the neighborhood properties in order to relieve the computational
burden in SVM training. We utilized k nearest neighbors to look around the
pattern’s periphery. The first neighborhood property is that “a pattern located
near the decision boundary tends to have more heterogeneous neighbors in their
class-membership.” The second neighborhood property dictates that “an over-
lap or a noisy pattern tends to belong to a different class from its neighbors.”
The first one is used for identifying those patterns located near the decision
boundary. The second one is used for removing the patterns located on the
wrong side of the decision boundary. These properties were first implemented
as a naive form with time complexity O(M?) where M is the number of given
training patterns. Then, to accelerate the pattern selection procedure we uti-
lized another property. The third neighborhood property is that “the neighbors
of a pattern located near the decision boundary tend to be located near the
decision boundary as well.” The third one skips calculation of unnecessary dis-
tances between patterns. This advanced form of algorithm, fast NPPS, has a
practical time complexity of O(M?) where v is the number of patterns located
in the overlap region. The number of patterns located in the overlap region, v,
is closely related to determine a parameter of NPPS, the number of neighbors,
k, accordingly we provided a heuristic method to set the value of k. Then, we
proved invariance of the neighborhood relation under the input to feature space
mapping, which assures that the patterns selected by NPPS in input space are
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likely to be located near decision boundary in feature space in where SVs are de-
fined. Through experiments on the synthetic as well as the real-world problems,
we empirically showed the efficiency of the proposed algorithms. SVMs with
NPPS were trained much faster with fewer redundant support vectors, with lit-
tle loss if any in test performance of most datasets. In addition, to exemplify a
practical usage of the proposed method, we applied NPPS to marketing domain
problem. SVM with NPPS achieved the accuracies and uplifts comparable to
those of SVM with 80-100% random samples, while the computational cost was
comparable to those of SVM with 10-20% random samples.

Here, we would like to address some limitations and future work.

1. Fast NPPS is geared up for efficient searching with initial random sam-
ples (see Fig. 5.2). A small proportion of random sampling, however, may
cause a problem when the class distribution is multi-modal. A small lump
of patterns rather isolated could be excluded from the searching unless an
initial random sample hits one of them. A current remedy for the risk
is to check the class distribution first. If the class distribution falls on a
multi-modal case, then we recommend to use naive NPPS instead. Actu-
ally, we implemented fast NPPS to be able to easily switch to naive NPPS
just by setting the sampling ratio to 1.

2. NPPS were developed under the assumption that the classes are over-
lapped (a non-separable case). Therefore, if one class is remote and clearly
separable from the other, an empty set will be returned as a selected pat-
tern set after the first iteration. And also the algorithms could not guar-
antee the original performance of SVM when the pattern is stored as a
sparse vector. We encountered such a case in 1-8 SVM of MNIST data set.
The patterns in ‘1’ digit class are known as sparse vectors. Moreover, the
class is linearly separable from all other digit classes (Liu and Nakagawa,
2001; Platt, 1999). Thus it requires to see if the selected pattern set is too
small or unbalanced. If so, training with all patterns is desirable.

3. To estimate the number of the patterns in the overlap region, we assumed
that both sides of the decision boundary within that region contain roughly
the same number of correct and incorrect patterns (in section 6.3). There-
fore, further extension for more general cases needs to be pursued.

4. Tt is not easy to find the right value for 5 in Selecting Condition. Parame-
ter 3 controls the selectivity by ANN classifier. The larger value of 3 leads
to the smaller number of selected patterns. But, the performance of ANN
classifier decreases as the dimensionality increases if k is fixed. Therefore,
in low dimensional space, 3 can be set to a large value (i.e. 5 = 1), since
kNN classifier performs well. But in high dimensional space, a large value
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of (3 is somewhat risky. Empirically, 5 = 1 was not problematic up to
about 20 dimensional space. The result coincides with the recommenda-
tion in (Mitchell, 1997).

. An extension or a modification of the procedure of “determining the value
of k7 is necessary to handle the high dimensionality. A higher dimensional-
ity usually requires a larger k value. However, we have not yet considered
this dimensionality-related factor in the procedure (see Eq. (6.13)). The
proposed procedure gave a good estimate of k at a moderately high di-
mensional space of about 10 to 20 (i.e., Pima Indian Diabetes, Wisconsin
Breast Cancer), but it did underestimate k at a fairly high dimensional
space of 784 as in the case of MNIST datasets. The experiment involving
MNIST datasets resulted in a k value less than 10 while a much better
SVM performance was obtained with a k value larger than 50.

. SVM solves a multi-class problem by divide-and-combine strategy which
divides the multi-class problem into several binary sub-problems (e. g.,
one-versus-others or one-versus-one), and then, combines the outputs.
This led us to apply our algorithm only to binary class problems in our
current research. However, the proposed pattern selection algorithm may
be extended without major correction to multi-class problems (see Fig. 4.1,
Fig. 4.3 and Fig. 5.2).

. The current version of NPPS works for classification problems only, thus
is not applicable to regression problems. In a regression problem, the
patterns located away from others, such as outliers, are less important to
learning. Thus, a straightforward idea would be to use the mean (u) and
variance (X) of k nearest neighbors’ outputs. A pattern having a small
value of ¥ can be replaced by u of its neighbors and itself. That is, k 4+ 1
patterns can be replaced by one pattern. On the contrary, a pattern having
a large value of 3 can be totally eliminated, and its neighbors will be used
for the next pattern searching. A similar research was conducted in Shin
and Cho (2002) based on ensemble neural network, but more extended
study based on k nearest neighbors is still under consideration.
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